CHAPTER -1. WHAT’S NEW IN “DIVE INTO PYTHON
3”

% Isn’t this where we came in? %

— Pink Floyd, The Wall

-1.1. A.K.A. “THE MINUS LEVEL”

A re you already a Python programmer?! Did you read the original “Dive Into Python”? Did you buy it

on paper! (If so, thanks!) Are you ready to take the plunge into Python 3? ... If so, read on. (If none of that

is true, you'd be better off starting at the beginning.)

Python 3 comes with a script called 2to3. Learn it. Love it. Use it. Porting Code to Python 3 with 2to3 is a

reference of all the things that the 2to3 tool can fix automatically. Since a lot of those things are syntax
changes, it’s a good starting point to learn about a lot of the syntax changes in Python 3. (print is now a

function, “x" doesn’t work, &c.)

Case Study: Porting chardet to Python 3 documents my (ultimately successful) effort to port a non-trivial

library from Python 2 to Python 3. It may help you; it may not. There’s a fairly steep learning curve, since
you need to kind of understand the library first, so you can understand why it broke and how | fixed it. A

lot of the breakage centers around strings. Speaking of which...

Strings. Whew. Where to start. Python 2 had “strings” and “Unicode strings.” Python 3 has “bytes” and
“strings.” That is, all strings are now Unicode strings, and if you want to deal with a bag of bytes, you use
the new bytes type. Python 3 will never implicitly convert between strings and bytes, so if you’re not sure

which one you have at any given moment, your code will almost certainly break. Read the Strings chapter

for more details.

Bytes vs. strings comes up again and again throughout the book.

www.princexml.com
Prince - Personal Edition
This document was created with Prince, a great way of getting web content onto paper.

http://diveintopython.org/

files in text mode requires an encoding parameter. Some text file methods count characters, but other
methods count bytes. If your code assumes that one character == one byte, it will break on multi-byte
characters.

In HTTP Web Services, the httplib2 module fetches headers and data over HTTP. HTTP headers are

returned as strings, but the HTTP body is returned as bytes.

In Serializing Python Objects, you’ll learn why the pickle module in Python 3 defines a new data format that

is backwardly incompatible with Python 2. (Hint: it's because of bytes and strings.) Also, Python 3 supports
serializing objects to and from JSON, which doesn’t even have a bytes type. I'll show you how to hack
around that.

In Case study: porting chardet to Python 3, it’s just a bloody mess of bytes and strings everywhere.

Even if you don’t care about Unicode (oh but you will), you’ll want to read about string formatting in Python

3, which is completely different from Python 2.

Iterators are everywhere in Python 3, and | understand them a lot better than | did five years ago when |
wrote “Dive Into Python”. You need to understand them too, because lots of functions that used to return

lists in Python 2 will now return iterators in Python 3. At a minimum, you should read the second half of

the Iterators chapter and the second half of the Advanced lIterators chapter.

By popular request, I've added an appendix on Special Method Names, which is kind of like the Python docs

“Data Model” chapter but with more snark.

When | was writing “Dive Into Python”, all of the available XML libraries sucked. Then Fredrik Lundh wrote

but you should avoid them, because they suck!

Also new in Python — not in the language but in the community — is the emergence of code repositories

like The Python Package Index (PyPl). Python comes with utilities to package your code in standard formats

and distribute those packages on PyPl. Read Packaging Python Libraries for details.

http://www.python.org/doc/3.1/reference/datamodel.html#special-method-names
http://www.python.org/doc/3.1/reference/datamodel.html#special-method-names
http://effbot.org/zone/element-index.htm
http://docs.python.org/3.1/library/xml.etree.elementtree.html
http://docs.python.org/3.1/library/xml.etree.elementtree.html
http://pypi.python.org/

CHAPTER O. INSTALLING PYTHON

% Tempora mutantur nos et mutamur in illis. (Times change, and we change with them.) %

— ancient Roman proverb

0.1. DIVING IN

B efore you can start programming in Python 3, you need to install it. Or do you?

0.2. WHICH PYTHON IS RIGHT FOR YOU?

If you're using an account on a hosted server, your ISP may have already installed Python 3. If you’re running
Linux at home, you may already have Python 3, too. Most popular GNU/Linux distributions come with
Python 2 in the default installation; a small but growing number of distributions also include Python 3. Mac
OS X includes a command-line version of Python 2, but as of this writing it does not include Python 3.
Microsoft Windows does not come with any version of Python. But don’t despair! You can point-and-click

your way through installing Python, regardless of what operating system you have.

The easiest way to check for Python 3 on your Linux or Mac OS X system is from the command line. Once

you’re at a command line prompt, just type python3 (all lowercase, no spaces), press ENTER, and see what
happens. On my home Linux system, Python 3.1 is already installed, and this command gets me into the

Python interactive shell.

mark@atlantis:~$% python3

Python 3.1 (r31:73572, Jul 28 2009, 06:52:23)

[GCC 4.2.4 (Ubuntu 4.2.4-1ubuntu4d4)] on linux2

Type "help", "copyright", "credits" or "license" for more information.

>>>

(Type exit() and press ENTER to exit the Python interactive shell.)

3

My web hosting provider also runs Linux and provides command-line access, but my server does not have

Python 3 installed. (Boo!)

mark@manganese:~$% python3

bash: python3: command not found

So back to the question that started this section, “Which Python is right for you?” Whichever one runs on

the computer you already have.

[Read on for Windows instructions, or skip to Installing on Mac OS X, Installing on Ubuntu Linux, or

Installing on Other Platforms.]

0.3. INSTALLING ON MICROSOFT WINDOWS

Windows comes in two architectures these days: 32-bit and 64-bit. Of course, there are lots of different
versions of Windows — XP, Vista, Windows 7 — but Python runs on all of them. The more important

distinction is 32-bit v. 64-bit. If you have no idea what architecture you're running, it’s probably 32-bit.

Visit python.org/download/ and download the appropriate Python 3 Windows installer for your

architecture. Your choices will look something like this:

Python 3.1 Windows installer (Windows binary — does not include source)

Python 3.1 Windows AMDé4 installer (Windows AMDé4 binary — does not include source)

| don’t want to include direct download links here, because minor updates of Python happen all the time and
| don’t want to be responsible for you missing important updates. You should always install the most recent

version of Python 3.x unless you have some esoteric reason not to.

http://cornerhost.com/
http://python.org/download/

Once your download is complete, double- Open File - Security Warning

click the .msi file. Windows will pop up a Do pou want to run this file?
security alert, since you're about to be
Mame: python-3.1.msi
running executable code. The official Python

Fublizher: Python Software Foundation

installer is digitally signed by the Python Type: Windows Installer Package
From: :\incoming

Software Foundation, the non-profit

corporation that oversees Python Bun] | Cancel |

, SRTE o
development. Don’t accept imitations! G il el sl i s

X “While files from the Internet can be useful, this file type can
Click the Run button to launch the Python o patentially harm your computer. Only run zofbware from publishers
youl trugt, What's the risk?

3 installer.

i Python 3.1 Setup
The first question the installer Select whether to install Python 3.1 for

will ask you is whether you all users of this computer.

want to install Python 3 for all

users or just for you. The ®instal for al users:

default choice is “install for all (O Install just for me (not available on Windows Wista)

users,” which is the best

choice unless you have a good
reason to choose otherwise.
(One possible reason why you

would want to “install just for

me” is that you are installing pl;l’[h()ﬂ
f

o

windows

Python on your company’s

computer and you don’t have

administrative rights on your | mMext= | [cancel |

Windows account. But then,
why are you installing Python

without permission from your company’s Windows administrator? Don’t get me in trouble here!)

Click the Next button to accept your choice of installation type.

http://www.python.org/psf/
http://www.python.org/psf/

Next, the installer will prompt
you to choose a destination
directory. The default for all
versions of Python 3.1.x is
C:\Python31\, which should
work well for most users
unless you have a specific
reason to change it. If you
maintain a separate drive letter
for installing applications, you
can browse to it using the
embedded controls, or simply
type the pathname in the box
below. You are not limited to
installing Python on the C:
drive; you can install it on any

drive, in any folder.

i Python 3.1 Setup

python

for

windows

Select Destination Directory

Please select a directary for the Python 2.1 files,

£ Pythonal

o]

IC\Python3 14

[Mext >

i [Cancel

Click the Next button to accept your choice of destination directory.

The next page looks

complicated, but it’s not really.

Like many installers, you have
the option not to install every
single component of Python 3.
If disk space is especially tight,
you can exclude certain

components.

Register Extensions allows
you to double-click Python
scripts (.py files) and run
them. Recommended but not
required. (This option doesn’t
require any disk space, so
there is little point in

excluding it.)

[Python 3.1 Setup

python

flll’
windows

X

Customize Python 3.1

Select the way you want features to be installed.
Click on the icons in the tree below to change the
way features will be installed,

Register Extensions
Telf Tk
Docurmentation
Litility Scripts

Test suite

Python Interpreter and Libraries

Thiz feature reguires 19MB on your hard drive, It
has 5 of 5 subfeatures selected. The subfeatures
require 26ME on your hard drive,

[Disk: Uzage] [Acvanced

= Back “ MNext > | [Cancel

TcllTk is the graphics library used by the Python Shell, which you will use throughout this book. | strongly

recommend keeping this option.

Documentation installs a help file that contains much of the information on docs.python.org.

Recommended if you are on dialup or have limited Internet access.

Utility Scripts includes the 2to3.py script which you’ll learn about later in this book. Required if you want

to learn about migrating existing Python 2 code to Python 3. If you have no existing Python 2 code, you can

skip this option.

Test Suite is a collection of scripts used to test the Python interpreter itself. We will not use it in this

book, nor have | ever used it in the course of programming in Python. Completely optional.

http://docs.python.org/

If you’re unsure how much
disk space you have, click the
Disk Usage button. The
installer will list your drive
letters, compute how much
space is available on each
drive, and calculate how much

would be left after installation.

Click the 0K button to return

to the “Customizing Python”

page.

If you decide to exclude an
option, select the drop-down
button before the option and
select “Entire feature will be
unavailable.” For example,
excluding the test suite will
save you a whopping 7908k B

of disk space.

Click the Next button to

accept your choice of options.

i Python 3.1 Setup

Disk Space Requirements
The disk space reqguired for the installation of the selected features,

The highlighted volurnes (if any) do not have enough disk space available for
the currently selected features, You can either remove some files from the
highlighted volurmes, or choose to install less features onto local drive(s), or
select different destination drivel(s).

R-"l:u_l_l:J_rne Disk Size Available Required Difference
i Q366 A2GE 73MB G20GE

X

i Python 3.1 Setup

Gustomize Python 3.1

Select the way you want features to be installed.
Click on the icons in the tree below to change the
way featuras wil be installed.

= =] Python
=) ~ | Reqgister Extensions
= - | Tolf Tk
=1 | Docurmentation
= - | Utility Scripts
Test suite
=1 Wil be installed on local hard drive

=18 Entire feature will be installed on local hare

Pythion test

Entire feature will be unavailable

Thiz feature requires 7I08KE on your hard drive,

python

fLJI'

windows

[Dizk uzage] [ﬂdvanced < Back H MNext > | [Zancel

The installer will copy all the
necessary files to your chosen
destination directory. (This
happens so quickly, | had to
try it three times to even get

a screenshot of it!)

Click the Finish button to

exit the installer.

i Python 3.1 Setup

X

Install Python 3.1

Pleaze wait while the Installer installs Python 3.1, This may take sewveral
minutes,

Status: Copying new files

i Python 3.1 Setup

Gompleting the Python 3.1 Installer

Spedial Windows thanks to:
Mark Hammond, without whiose years of freely
shated Windows expertise, Python for Windows
woLld still be Python for DOS,

python

fLJI'

windows

Click the Finish button to exit the Installer,

Firizh

Python Shell

your File Edit Shel Debug Options wWindows Help
Python 3.1 (r31:73574, Jun 26 2009, 2Z0:21:35) [M3C +.1500 32 bhit (Intel)] on win
32
Type Toopyright™, foredits™ or "license() ™ for more information.
e

Lr; 3 | Cal: 4|

Start menu, there should be a

new item called Python 3.1. Within that, there is a program called IDLE.

Select this item to run the interactive Python Shell.

[Skip to using the Python Shell]

0.4. INSTALLING ON MAcC OS X
All modern Macintosh computers use the Intel chip (like most Windows PCs). Older Macs used PowerPC
chips. You don’t need to understand the difference, because there’s just one Mac Python installer for all

Macs.

Visit python.org/download/ and download the Mac installer. It will be called something like Python 3.1

Mac Installer Disk Image, although the version number may vary. Be sure to download version 3.x, not

2.x.
800 |_ Python 3.1 —
[« |» | N = | oo | il
¥ DEVICES =
(= v
=} MiniFiona . g..mm..! g..mm.!
Thin e el de T mrs el e
@ Remote Disc L= = —
E Backup - 3‘:2’"“:.:?'.:;.1.':'-1':7;. Z‘L’..T.:'.".@;.'..'.:'-i':.'.'"
et e B eyt it Aty
. P\,rth{;n 3.1 = :;:::KT:L"::; :;::SKT:L"::;
¥ it g it s g
il it et rar bl it et s
¥ SHARED ot ks 1 g 41 birelels st P
@ atlantis
Build.txt Licensa.txt Python.mpkg
¥ PLACES
ﬁ Applications
'm- mark .
u'.':.:'.‘..,“i'f“."'.L
@ Documents :T'_D:“"m
(1] incoming e,
Ty e ——
by e fs o besasied
¥ SEARCH FOR - it g
. St v s
(L) Teday ket
(L) Yesterday -
— '
(L) Past Week I3 ReadMe.txt

Your browser should automatically mount the disk image and open a Finder window to show you the
contents. (If this doesn’t happen, you'll need to find the disk image in your downloads folder and double-click
to mount it. It will be named something like python-3.1.dmg.) The disk image contains a number of text

files (Build.txt, License.txt, ReadMe. txt), and the actual installer package, Python.mpkg.

Double-click the Python.mpkg installer package to launch the Mac Python installer.

http://python.org/download/

The first
page of the
installer
gives a brief
description
of Python
itself, then
refers you
to the
ReadMe. txt
file (which
you didn’t
read, did

you?) for

more details.

Click the

Continue

Welcome to the Python Installer

This package will install MacPython 3.1 for Mac OS X 10.3 or later.
& Introduction
MacPython consists of the Python programming language interpreter,
lus a set of programs to allow easy access to it for Mac users including
an integrated development environment IDLE plus a set of pre-built
extension modules that open up specific Macintosh technologies to

Python programs.

® Read M

® License

See the ReadMe file for more information.

NOTE: This package will by default not update your shell profile and will
also notinstall files in fusrlocal. Double-click Update Shell Profile at
any time to make 3.1 the default Python.

,r. Go Back \‘ CCnntinue :]

button to move along.

The next @QE%

page actually Important Information
contains This package will install Python 3.1 for Mac O3 X o
; 10.3 or later for the following v
some & Introduction architecture(s): i386, ppc. ™
. & Read M _ _ _
important separate installers are available for older versions
® License of Mac OS5 X, see the homepage, below.
information:
Installation requires approximately 71 MB of disk
Python space, ignore the message that it will take zero bytes.
requires You mustinstall onto your current boot disk, even
though the installer does not enforce this, otherwise
Mac OS X things will not work.
10.3 or Python consists of the Python programming language
interpreter, plus a set of programs to allow easy "
later. If you access to it for Mac users including an integrated development
environment, IDLE, plus a set of pre-built extension modules
are still that open up specific Macintosh technologies to Python programs.
running Mac The installer puts the applications in "Python 3.1° ke
in your Applications folder, and the underlying machinery in i
OS X 10.2, ILibrary/Frameworks/Python framework. It can optionally place v
you should (Print...) (Save...) (Go Back) (Continue :l
really
upgrade.
Apple no

longer provides security updates for your operating system, and your computer is probably at risk if you

ever go online. Also, you can’t run Python 3.

Click the Continue button to advance.

lee a” gOOd @Q‘%

installers, Software License Agreement
the Python A, HISTORY OF THE SOFTWARE i
= L
installer & Introduction | | m
Python was created in the early 19903 by Guido van Rossum at
displays the stichting o
Mathematisch Centrum (CWI, see httpzfwww.cwi.nl) in the
software Metherlands
as a successor of a language called ABC. Guido remains Python's
license principal author, although itincludes many contributions from others.
agreement. In 1985, Guido continued his work on Python at the Corporation for
Mational Research Initiatives (CMRI, see httpyfwww.cnri.reston.va.us)
Python is in Reston, Virginia where he released several versions of the
software.
open _
In May 2000, Guido and the Python core development team moved to
source, and BeOpen.com to form the BeOpen PythonLabs team. In October of the
same
its license is year, the PythonLabs team moved to Digital Creations (now Zope
Corporation, see hitpz'www . zope.com). In 2001, the Python Software
approved by Foundation (PSF, see hitpZfwww python.org/pst) was formed, a
""""""""""""""""""""" non-profit organization created specifically to own Python-related ¥
the Open Intellectual Froperty. Zope Corporation is a sponsoring member of .
.............................. e O E
__5__9}_1__['_99_ (Print...) (Save. ..) (Go Back) (Continue :l
Initiative.
Python has
had a

number of owners and sponsors throughout its history, each of which has left its mark on the software
license. But the end result is this: Python is open source, and you may use it on any platform, for any

purpose, without fee or obligation of reciprocity.

Click the Continue button once again.

http://opensource.org/licenses/
http://opensource.org/licenses/
http://opensource.org/licenses/
http://opensource.org/licenses/

Due to @Q‘%

quirks in the X) .
To continue installing the software you must agree to the terms
standard of the software license agreement. i
& Int :
Apple n O
o Re: Click Agree to continue or click Disagree to cancel the installation
installer) and quit the Installer.
& Lic
framework,
Read License Disagree H
you must () (_ Disagree)
“agree” to IS, ugd _
Mational Research Initiatives (CMRI, see httpywww.cnri.reston.va.us)
the software in Reston, Virginia where he released several versions of the
software.
license in _
In May 2000, Guido and the Python core development team moved to
order to BeOpen.com to form the BeOpen PythonLabs team. In October of the
same
complete year, the PythonLabs team moved to Digital Creations (now Zope
Corporation, see hitp2www zope.com). In 2001, the Python Software
the Foundation (PSF, see http2fwww.python.org/psf) was formed, a
non-profit organization created specifically to own Python-related ¥
installation. Intellectual Froperty. Zope Corporation is a sponsoring member of .
e DO
Since Python (Print...) (Save...) (Go Back) (Continue :l
is open
source, you
are really

“agreeing” that the license is granting you additional rights, rather than taking them away.

Click the Agree button to continue.

The next

screen Standard Install on “MiniFiona"

allows you

to change
This will take 65.2 MB of space on your computer.

your install
Click Install to perform a standard installation of

location. this software on the volume “MiniFiona’.

You must
install

Python on

your boot
drive, but
due to

limitations of

the installer (Change Install Location. ..)

it does not (" Customize) (GoBack) (Install)

enforce this.

In truth, |
have never

had the need to change the install location.

From this screen, you can also customize the installation to exclude certain features. If you want to do this,

click the Customize button; otherwise click the Install button.

If you 800 ‘s Install Python

choose a Custom Install on “MiniFiona”
Custom Package Mame Action Size
nsall. th & Introduction V| Python Framework Install 39.6 MB
nstall, the # GuI Applications Install 1.6 MB
installer will ™ UNIX command-line tools Install 6.0 KB

W Python Documentation Install 24.0 MB
present you [] Shell profile updater Skip 0 hytes
with the [Fix system Python Skip 0 bytes
following list
of features:
Python Space Required: 65.2 ME Remaining: 27.1 GB

Ir Standard Install \1 Ir Go Back “1 Ir Install \I

Framework. This is the guts of Python, and is both selected and disabled because it must be installed.

GUI Applications includes IDLE, the graphical Python Shell which you will use throughout this book. |
strongly recommend keeping this option selected.

UNIX command-line tools includes the command-line python3 application. | strongly recommend keeping
this option, too.

Python Documentation contains much of the information on docs.python.org. Recommended if you are

on dialup or have limited Internet access.

Shell profile updater controls whether to update your shell profile (used in Terminal.app) to ensure that
this version of Python is on the search path of your shell. You probably don’t need to change this.

Fix system Python should not be changed. (It tells your Mac to use Python 3 as the default Python for all

scripts, including built-in system scripts from Apple. This would be very bad, since most of those scripts are

written for Python 2, and they would fail to run properly under Python 3.)

Click the Install button to continue.

http://docs.python.org/

Because it
installs
system-wide
frameworks
and binaries
in /usr/
local/bin/,
the installer
will ask you

for an

b Details

Installer requires that you type your
password.

Mame: |Mark Pilgrim

Password:

(Cancel) E—GH

(Change Install Location. .. :1

(Gobacc) (amED)

(Customize)

administrative password. There is no way to install Mac Python without administrator privileges.

Click the OK button to begin the installation.

The installer
will display a
progress
meter while
it installs the
features
you’ve

selected.

Assuming all
went well,
the installer
will give you
a big green
checkmark
to tell you
that the
installation
completed

successfully.

Installing Python

Installing GUI Applications

Writing files

,r. GCo Back \‘ 'r_Continue \‘

Installation completed successfully

Install Succeeded

The software was successfully installed.

,r. Co Back \‘ Hh-—y

Click the Close button to exit the installer.

Assuming you didn’t change the
install location, you can find the
newly installed files in the
Python 3.1 folder within your
/Applications folder. The
most important piece is IDLE,

the graphical Python Shell.

Double-click IDLE to launch the
Python Shell.

¥ DEVICES
= MiniFiona
@ Remote Disc

E Backup =

¥ SHARED
atlantis

¥ PLACES
ﬁ Applications

5% mark

@ Documents
(L] incoming
¥ SEARCH FOR

(L) Today

(L) Yesterday

(L) Past Week

All Images

All Movies

All Documents

20

f‘f; '

K

Extras

Python Launcher

IDLE

CMND

Update Shell
Profile.command

The Python Shell is where
you will spend most of
your time exploring
Python. Examples
throughout this book will
assume that you can find
your way into the Python
Shell.

[Skip to using the Python

® IDLE File Edit Shell Debug Window Help

ann Python Shell

Python 3.1 (r31:735378, Jun 27 2009, 21:49:48)

[52C 4.0.1 (apple Inc. build 54933] on darwdin

Type "copyrright”, "credits" or "licenser()” for more information.
)

Ln: 4/Col: 4|

0.5. INSTALLING ON UBUNTU LINUX

Modern Linux distributions are backed by vast repositories of precompiled applications, ready to install. The

exact details vary by distribution. In Ubuntu Linux, the easiest way to install Python 3 is through the Add/

Remove application in your Applications menu.

21

i- Add/Remove Applications =

All Show: {Canonical-maintained applications, ¢ J Search: %
%Accessories Abolicati P larit M
_— _ ication v Popularit |
{5 Education PP P =
= O @;&ACPIusEnc * u

-, Games Converts WAV files to the AAC+ format.
§# Graphics u J AbiWord
e Internet ~ Compose, edit, and view documents

Office | Adobe Reader 8
x - - FPDF Viewer x
<> Other

() Programming @ AbiWord
& Sound & Video AbiWord is a full-featured, efficient word processing

Lo T <]

& System Tools application. It is suitable for a wide variety of word
Universal Access || Processing tasks, and is extensible with a variety of
plugins. & € g

Qﬂem. o Cancel | Apply Changes

H

When you first launch the Add/Remove application, it will show you a list of preselected applications in
different categories. Some are already installed; most are not. Because the repository contains over 10,000
applications, there are different filters you can apply to see small parts of the repository. The default filter is
“Canonical-maintained applications,” which is a small subset of the total number of applications that are

officially supported by Canonical, the company that creates and maintains Ubuntu Linux.

- Add/Remove Applications !

_ Show: {AII Open Source applications K J Search: %
B3 Accessories — — 0
5 Education Application v Popularit
- a 4 AbiWord .
éGames ¥ Compose, edit, and view documents

Graphics 41 About Myself
e Internet HD ’ Change personal information * ok k

Office Abraca
%Other o @ Simple GTK+ XMMS2 client *x ™
) Programming <& Abiword]
& Sound & Video AbiWord is a full-featured, efficient word processing -
System Tools application. It is suitable for a wide variety of word
Universal Access || Processing tasks, and is extensible with a variety of

plugins. & € g

| He p- | Cance | Apply Changes
@ Hel aC I Apply Ch

22

Python 3 is not maintained by Canonical, so the first step is to drop down this filter menu and select “All

Open Source applications.”

1. Add/Remove Applications m

All Show: ‘AII Open Source applications K J Search: python 3| v
% Accessories —— = M
5 Education Application Popularit B
= m . !DLE (using Python-3.0) u
é Games e Integrated Development Environment for Python {using Pyth. ..

Graphics Python (v3.0)
e Internet - "' Python Interpreter (v3.0) * kK
¢ Office | 4 IDLE3 X
@ Other Integrated Development Environment for Python3 ™
() Programming @ IDLE (using Python-3.0) i
& Sound & Video IDLE is an Integrated Development Environment for i
& System Tools Python (v3.0). IDLE is written using Tkinter and therefore [
Universal Access || Auite platform-independent L 4

IDLE is an Integrated Development Environment for Python (v3.0).]

eﬂelp- @ Cancel | Apply Changes

Once you've widened the filter to include all open source applications, use the Search box immediately after

the filter menu to search for Python 3.

- Add/Remove Applications m

_ Show: ‘AII Open Source applications K J Search: python 3 %

% Accessories

- Application Popularit
I3 Education PP _ P
o G IDLE (using Python-3.0) *
v, bames Integrated Development Environment for Python (using Pyth...
$# Graphics o Pythen (v3.0)
e Internet Python Interpreter (v3.0)
S Office - ¢ IDLE3 . *
@ Other Integrated Development Environment for Python3

[<]

() Programming @ Python (v3.0)
& Sound & Video Version 3.0 of the high-level, interactive object oriented

System Tools language, includes an extensive class library with lots of

Universal Access || 9oodies for network programming, system
administration, sounds and graphics @

()
-

eﬂem- @ Cancel J { Apply Changes |

23

Now the list of applications narrows to just those matching Python 3. You're going to check two packages.

The first is Python (v3.0). This contains the Python interpreter itself.

[~ 1. Add/Remove Applications = =E3

All Show: ‘AII Open Source applications K J Search: python 3 %

% Accessories Aoplicati p larit M

. ication opulari =i

5 Education DLE T r————— 5 =

- using on-3. L

;Games e Integrated Development Environment for Python (usi...

% Graphics Python (v3.0)

e Internet 2 Python Interpreter (v3.0) * KK

yOfﬁce ”D®IIDLE3C1D L Erwvi for Python3 *

& Other ntegrated Development Environment for Python 7

) Programming

& Sound & Video
#! System Tools
Universal Access

@ IDLE (using Python-3.0)

quite platform-independent @

IDLE is an Integrated Development Environment for
Python (v3.0). IDLE is written using Tkinter and therefore [

IDLE is an Integrated Development Environment for Python (v3.0).]

@Help

2 Cancel

J { Apply Changes

The second package you want is immediately above: IDLE (using Python-3.0). This is a graphical Python

Shell that you will use throughout this book.

After you've checked those two packages, click the Apply Changes button to continue.

24

The
package
manager
will ask
you to
confirm
that you
want to
add both
IDLE

(using

M T

@ Apply the following changes?

Please take a final look through the list of applications that
will be installed or removed.

Add
@ IDLE (using Python-3.0)

 Integrated Development Environment for Python (using Pytho...

Python (v3.0)
Python Interpreter (v3.0)

& Cancel | @ Apply |

Python-3.0) and Python (v3.0).

Click the Apply button to continue.

The package manager will show you a progress meter while it 4 7 Downloading Package Files (&3

downloads the necessary packages from Canonical’s Internet

repository.

Downloading Package Files

_ﬂ-wun-m-nng file 4 of 9 |

Download rate: 288 kB/s - 17s remaining

b Show for individual files

39 Cancel

25

Once the packages are & T Applying Changes E3

downloaded, the package Installing software

manager will automatically begin

installing them.

If all went well,
the package
manager will
confirm that
both packages
were successfully
installed. From
here, you can
double-click IDLE
to launch the

Python Shell, or

The marked changes are now being applied. This can
take some time. Please wait.

—

Preparing to configure python3-minimal

b Details

6 New applications have been installed

To start a newly installed application double click on it.

IDLE (using Python-3.0)

Integrated Development Ervironment for Python (using P...

A Python (v3.0)
Python Interpreter (v3.0)

|5ddeemove More Applications ‘ ‘ D Qlose‘

click the Close button to exit the package manager.

You can always relaunch the Python Shell by going to your Applications menu, then the Programming

submenu, and selecting IDLE.

26

The | ¥ | sthon Shell

File Edit Debug Options Windows

Python 3.0.1+ (r301:69556, Apr 15 2009, 17:25:52)

[GCC 4.3.3] on linux2

Iype "copyright", "credits" or "license()" for more information.
==== WNo Subprocess ====

il

Python Shell is where you will spend most of your time exploring Python. Examples throughout this book

will assume that you can find your way into the Python Shell.

[Skip to using the Python Shell]

27

0.6. INSTALLING ON OTHER PLATFORMS

Python 3 is available on a number of different platforms. In particular, it is available in virtually every Linux,
BSD, and Solaris-based distribution. For example, RedHat Linux uses the yum package manager. FreeBSD has

its ports and packages collection, SUSE has zypper, and Solaris has pkgadd. A quick web search for Python

3 + your operating system should tell you whether a Python 3 package is available, and if so, how to install it.

0.7. USING THE PYTHON SHELL

The Python Shell is where you can explore Python syntax, get interactive help on commands, and debug
short programs. The graphical Python Shell (named IDLE) also contains a decent text editor that supports
Python syntax coloring and integrates with the Python Shell. If you don’t already have a favorite text editor,

you should give IDLE a try.

First things first. The Python Shell itself is an amazing interactive playground. Throughout this book, you'll see

examples like this:

>>> 1 + 1

The three angle brackets, >>>, denote the Python Shell prompt. Don’t type that part. That’s just to let you

know that this example is meant to be followed in the Python Shell.

1 + 1 is the part you type. You can type any valid Python expression or command in the Python Shell.
Don’t be shy; it won’t bite! The worst that will happen is you’ll get an error message. Commands get
executed immediately (once you press ENTER); expressions get evaluated immediately, and the Python Shell

prints out the result.

2 is the result of evaluating this expression. As it happens, 1 + 1 is a valid Python expression. The result, of

course, is 2.

28

http://www.freebsd.org/ports/

Let’s try another one.

>>> print('Hello world!")

Hello world!

Pretty simple, no? But there’s lots more you can do in the Python shell. If you ever get stuck — you can’t
remember a command, or you can’t remember the proper arguments to pass a certain function — you can

get interactive help in the Python Shell. Just type help and press ENTER.

>>> help

Type help() for interactive help, or help(object) for help about object.
There are two modes of help. You can get help about a single object, which just prints out the
documentation and returns you to the Python Shell prompt. You can also enter help mode, where instead of
evaluating Python expressions, you just type keywords or command names and it will print out whatever it

knows about that command.

To enter the interactive help mode, type help() and press ENTER.

29

>>> help()

Welcome to Python 3.0! This is the online help utility.

If this is your first time using Python, you should definitely check out

the tutorial on the Internet at http://docs.python.org/tutorial/.

Enter the name of any module, keyword, or topic to get help on writing
Python programs and using Python modules. To quit this help utility and

return to the interpreter, just type "quit".

To get a list of available modules, keywords, or topics, type "modules",
"keywords", or "topics". Each module also comes with a one-line summary
of what it does; to list the modules whose summaries contain a given word

such as "spam", type "modules spam".
help>
Note how the prompt changes from >>> to help>. This reminds you that you're in the interactive help

mode. Now you can enter any keyword, command, module name, function name — pretty much anything

Python understands — and read documentation on it.

30

help> print @

Help on built-in function print in module builtins:

print(...)

print(value, ..., sep=' ', end='\n', file=sys.stdout)

Prints the values to a stream, or to sys.stdout by default.

Optional keyword arguments:

file: a file-like object (stream); defaults to the current sys.stdout.
sep: string inserted between values, default a space.

end: string appended after the last value, default a newline.

help> PapayaWhip @

no Python documentation found for 'PapayaWhip'

help> quit ®

You are now leaving help and returning to the Python interpreter.

If you want to ask for help on a particular object directly from the
interpreter, you can type "help(object)". Executing "help('string')"
has the same effect as typing a particular string at the help> prompt.

>>> @

To get documentation on the print() function, just type print and press ENTER. The interactive help mode
will display something akin to a man page: the function name, a brief synopsis, the function’s arguments and
their default values, and so on. If the documentation seems opaque to you, don’t panic. You'll learn more
about all these concepts in the next few chapters.

Of course, the interactive help mode doesn’t know everything. If you type something that isn’t a Python
command, module, function, or other built-in keyword, the interactive help mode will just shrug its virtual
shoulders.

To quit the interactive help mode, type quit and press ENTER.

The prompt changes back to >>> to signal that you've left the interactive help mode and returned to the

Python Shell.

31

IDLE, the graphical Python Shell, also includes a Python-aware text editor.

0.8. PYTHON EDITORS AND IDES

IDLE is not the only game in town when it comes to writing programs in Python. While it’s useful to get

started with learning the language itself, many developers prefer other text editors or Integrated

Python-aware editors that covers a wide range of supported platforms and software licenses.

You might also want to check out the list of Python-aware IDEs, although few of them support Python 3 yet.

them in the command-line Python Shell. There’s no right or wrong way to develop in Python. Find a way

that works for you!

32

http://wiki.python.org/moin/PythonEditors
http://wiki.python.org/moin/PythonEditors
http://wiki.python.org/moin/IntegratedDevelopmentEnvironments
http://pydev.sourceforge.net/
http://eclipse.org/
http://www.activestate.com/komodo/
http://www.gnu.org/software/emacs/

CHAPTER 1. YOUR FIRST PYTHON PROGRAM

% Don’t bury your burden in saintly silence. You have a problem? Great. Rejoice, dive in, and investigate. %

— Ven. Henepola Gunaratana

1.1. DIVING IN

onvention dictates that | should bore you with the fundamental building blocks of programming, so we
can slowly work up to building something useful. Let’s skip all that. Here is a complete, working Python
program. It probably makes absolutely no sense to you. Don’t worry about that, because you’re going to

dissect it line by line. But read through it first and see what, if anything, you can make of it.

33

http://en.wikiquote.org/wiki/Buddhism

SUFFIXES = {1066: ['KB', 'MB', 'GB', 'TB', 'PB', 'EB', 'ZB', 'YB'],

1024: ['KiB', 'MiB', 'GiB', 'TiB', 'PiB', 'EiB', 'ZiB', 'YiB'l}

def approximate_size(size, a_kilobyte is 1024 bytes=True):

"'"'"Convert a file size to human-readable form.

Keyword arguments:
size -- file size in bytes
a_kilobyte_is_1024 bytes -- if True (default), use multiples of 1024

if False, use multiples of 1000

Returns: string

if size < O:

raise ValueError ('number must be non-negative')

multiple = 1024 if a_kilobyte is 1024 bytes else 1000
for suffix in SUFFIXES[multiplel]:

size /= multiple

if size < multiple:

return "{0:.1f} {1}'.format(size, suffix)

raise ValueError ('number too large')

if _name_ == '"_ main__':
print(approximate_size (1000000000000, False))

print (approximate_size(1000000000000))

Now let’s run this program on the command line. On Windows, it will look something like this:
c:\home\diveintopython3\examples> c:\python31l\python.exe humansize.py

1.0 TB
931.3 GiB

34

On Mac OS X or Linux, it would look something like this:

you@localhost:~/diveintopython3/examples$ python3 humansize.py
1.0 TB
931.3 GiB

What just happened? You executed your first Python program. You called the Python interpreter on the
command line, and you passed the name of the script you wanted Python to execute. The script defines a
single function, the approximate_size() function, which takes an exact file size in bytes and calculates a
“pretty” (but approximate) size. (You've probably seen this in Windows Explorer, or the Mac OS X Finder,
or Nautilus or Dolphin or Thunar on Linux. If you display a folder of documents as a multi-column list, it
will display a table with the document icon, the document name, the size, type, last-modified date, and so on.
If the folder contains a 1093-byte file named TODO, your file manager won’t display TODO 1093 bytes; it’ll say

something like TODO 1 KB instead. That’s what the approximate_size() function does.)

Look at the bottom of the script, and you'll see two calls to print(approximate_size(arguments)). These
are function calls — first calling the approximate_size() function and passing a number of arguments, then
taking the return value and passing it straight on to the print() function. The print() function is built-in;
yoU’ll never see an explicit declaration of it. You can just use it, anytime, anywhere. (There are lots of built-

in functions, and lots more functions that are separated into modules. Patience, grasshopper.)

So why does running the script on the command line give you the same output every time? We'll get to

that. First, let’s look at that approximate_size() function.

1.2. DECLARING FUNCTIONS

Python has functions like most other languages, but it does not have separate header files like C++ or

interface/implementation sections like Pascal. When you need a function, just declare it, like this:

def approximate_size(size, a_kilobyte is 1024 bytes=True):

35

The keyword def starts the function declaration,
followed by the function name, followed by the
arguments in parentheses. Multiple arguments are
separated with commas.

Also note that the function doesn’t define a return I I hen you

datatype. Python functions do not specify the datatype

need a

function,

of their return value; they don’t even specify whether or
not they return a value. (In fact, every Python function
returns a value; if the function ever executes a return

statement, it will return that value, otherwise it will

just declare

return None, the Python null value.)

it.

I=3" In some languages, functions (that return a

value) start with function, and subroutines
(that do not return a value) start with sub.
There are no subroutines in Python. Everything is a function, all functions return a

value (even if it’s None), and all functions start with def.

The approximate_size() function takes the two arguments — size and
a_kilobyte_is_1024_bytes — but neither argument specifies a datatype. In Python, variables are never

explicitly typed. Python figures out what type a variable is and keeps track of it internally.

I=3" In Java and other statically-typed languages, you must specify the datatype of the
function return value and each function argument. In Python, you never explicitly
specify the datatype of anything. Based on what value you assign, Python keeps track

of the datatype internally.

36

1.2.1. OPTIONAL AND NAMED ARGUMENTS

Python allows function arguments to have default values; if the function is called without the argument, the
argument gets its default value. Furthermore, arguments can be specified in any order by using named

arguments.

Let’s take another look at that approximate_size() function declaration:

def approximate_size(size, a_kilobyte_is 1024 bytes=True):

The second argument, a_kilobyte_is_1024_bytes, specifies a default value of True. This means the
argument is optional; you can call the function without it, and Python will act as if you had called it with True

as a second parameter.

Now look at the bottom of the script:

if __name__ == '_main__':
print(approximate_size (1000000000000, False)) @

print (approximate_size(1000000000000)) @

. This calls the approximate_size() function with two arguments. Within the approximate_size() function,
a_kilobyte_is_1024_bytes will be False, since you explicitly passed False as the second argument.

. This calls the approximate_size() function with only one argument. But that's OK, because the second
argument is optional! Since the caller doesn’t specify, the second argument defaults to True, as defined by

the function declaration.

You can also pass values into a function by name.

37

>>> from humansize import approximate_size

>>> approximate size (4000, a_kilobyte is 1024 bytes=False) @

'4.0 KB'

>>> approximate size(size=4000, a_kilobyte is 1024 bytes=False) @

'4.0 KB'

>>> approximate_size(a_kilobyte is 1024 bytes=False, size=4000) ®

'4.0 KB'

>>> approximate_size(a_kilobyte_ is_1024 bytes=False, 4000) @
File "<stdin>", line 1

SyntaxError: non-keyword arg after keyword arg

>>> approximate_size(size=4000, False) ®
File "<stdin>", line 1

SyntaxError: non-keyword arg after keyword arg

This calls the approximate_size() function with 4000 for the first argument (size) and False for the
argument named a_kilobyte_is_1024_bytes. (That happens to be the second argument, but doesn’t
matter, as you'll see in a minute.)

This calls the approximate_size() function with 4000 for the argument named size and False for the
argument named a_kilobyte_is_1024_bytes. (These named arguments happen to be in the same order as
the arguments are listed in the function declaration, but that doesn’t matter either.)

This calls the approximate_size() function with False for the argument named
a_kilobyte_is_1024_bytes and 4000 for the argument named size. (See? | told you the order didn’t
matter.)

This call fails, because you have a named argument followed by an unnamed (positional) argument, and that
never works. Reading the argument list from left to right, once you have a single named argument, the rest
of the arguments must also be named.

This call fails too, for the same reason as the previous call. Is that surprising? After all, you passed 4000 for
the argument named size, then “obviously” that False value was meant for the
a_kilobyte_is_1024_bytes argument. But Python doesn’t work that way. As soon as you have a named

argument, all arguments to the right of that need to be named arguments, too.

38

1.3. WRITING READABLE CODE

| won’t bore you with a long finger-wagging speech about the importance of documenting your code. Just
know that code is written once but read many times, and the most important audience for your code is
yourself, six months after writing it (i.e. after you've forgotten everything but need to fix something). Python

makes it easy to write readable code, so take advantage of it. You'll thank me in six months.

1.3.1. DOCUMENTATION STRINGS

You can document a Python function by giving it a documentation string (docstring for short). In this

program, the approximate_size() function has a docstring:

def approximate_size(size, a_kilobyte_ is 1024 bytes=True):

"'"'Convert a file size to human-readable form.

Keyword arguments:
size -- file size in bytes
a_kilobyte is 1024 bytes -- if True (default), use multiples of 1024

if False, use multiples of 1000

Returns: string

Triple quotes signify a multi-line string. Everything
between the start and end quotes is part of a single
string, including carriage returns, leading white space,
and other quote characters. You can use them
anywhere, but you’ll see them most often used when Every

defining a docstring.

function

39

Triple quotes are also an easy way to define
a string with both single and double quotes,

like qq/.../ in Perl 5.

deserves a

Everything between the triple quotes is the function’s
docstring, which documents what the function does. A
decent

docstring, if it exists, must be the first thing defined in

a function (that is, on the next line after the function

docstring.

declaration). You don’t technically need to give your

function a docstring, but you always should. | know

you’ve heard this in every programming class you've
ever taken, but Python gives you an added incentive: the

docstring is available at runtime as an attribute of the function.

I3~ Many Python IDEs use the docstring to provide context-sensitive documentation, so
that when you type a function name, its docstring appears as a tooltip. This can be

incredibly helpful, but it’s only as good as the docstrings you write.

1.4. THE import SEARCH PATH

Before this goes any further, | want to briefly mention the library search path. Python looks in several places
when you try to import a module. Specifically, it looks in all the directories defined in sys.path. This is just

a list, and you can easily view it or modify it with standard list methods. (You'll learn more about lists in

Native Datatypes.)

40

C)

>>> import sys
>>> sys.path @
(',
"/usr/lib/python3l.zip',
"/usr/lib/python3.1",
"/usr/1lib/python3.1/plat-1inux2@EXTRAMACHDEPPATH@',
"/usr/lib/python3.1/1ib-dynload’,
"/usr/lib/python3.1/dist-packages’,
"/usr/local/lib/python3.1/dist-packages']
>>> sys ©)
<module 'sys' (built-in)>
>>> sys.path.insert (0, '/home/mark/diveintopython3/examples') ®
>>> sys.path ®

['/home/mark/diveintopython3/examples',

(]
’

"/usr/lib/python3l.zip',

"/usr/lib/python3.1",
"/usr/lib/python3.1/plat-1inux2@EXTRAMACHDEPPATH@' ,
"/usr/lib/python3.1/1ib-dynload’,
"/usr/lib/python3.1/dist-packages’,

"/usr/local/lib/python3.1/dist-packages']

Importing the sys module makes all of its functions and attributes available.

sys.path is a list of directory names that constitute the current search path. (Yours will look different,
depending on your operating system, what version of Python you’re running, and where it was originally
installed.) Python will look through these directories (in this order) for a .py file whose name matches what
you’re trying to import.

. Actually, | lied; the truth is more complicated than that, because not all modules are stored as .py files.
Some are built-in modules; they are actually baked right into Python itself. Built-in modules behave just like
regular modules, but their Python source code is not available, because they are not written in Python! (Like
Python itself, these built-in modules are written in C.)

. You can add a new directory to Python’s search path at runtime by adding the directory name to sys.path,
and then Python will look in that directory as well, whenever you try to import a module. The effect lasts as

long as Python is running.

41

5. By using sys.path.insert (@, new_path), you inserted a new directory as the first item of the sys.path
list, and therefore at the beginning of Python’s search path. This is almost always what you want. In case of
naming conflicts (for example, if Python ships with version 2 of a particular library but you want to use
version 3), this ensures that your modules will be found and used instead of the modules that came with

Python.

1.5. EVERYTHING IS AN OBJECT

In case you missed it, | just said that Python functions have attributes, and that those attributes are available

at runtime. A function, like everything else in Python, is an object.
Run the interactive Python shell and follow along:

>>> import humansize)
>>> print(humansize.approximate size(4096, True)) @
4.0 KiB

>>> print(humansize.approximate size. doc_) ®

Convert a file size to human-readable form.

Keyword arguments:

size -- file size in bytes

a_kilobyte is_ 1024 bytes -- if True (default), use multiples of 1024
if False, use multiples of 1000

Returns: string
I. The first line imports the humansize program as a module — a chunk of code that you can use interactively,

or from a larger Python program. Once you import a module, you can reference any of its public functions,

classes, or attributes. Modules can do this to access functionality in other modules, and you can do it in the

42

Python interactive shell too. This is an important concept, and you’ll see a lot more of it throughout this
book.

When you want to use functions defined in imported modules, you need to include the module name. So
you can’t just say approximate_size; it must be humansize.approximate_size. If you've used classes in
Java, this should feel vaguely familiar.

Instead of calling the function as you would expect to, you asked for one of the function’s attributes,

doc

I=Z" import in Python is like require in Perl. Once you import a Python module, you
access its functions with module.function; once you require a Perl module, you

access its functions with module: : function.

1.5.1. WHAT’S AN OBJECT?

Everything in Python is an object, and everything can have attributes and methods. All functions have a built-
in attribute __doc__, which returns the docstring defined in the function’s source code. The sys module is

an object which has (among other things) an attribute called path. And so forth.

Still, this doesn’t answer the more fundamental question: what is an object? Different programming languages
define “object” in different ways. In some, it means that all objects must have attributes and methods; in
others, it means that all objects are subclassable. In Python, the definition is looser. Some objects have
neither attributes nor methods, but they could. Not all objects are subclassable. But everything is an object in

the sense that it can be assigned to a variable or passed as an argument to a function.

You may have heard the term “first-class object” in other programming contexts. In Python, functions are
first-class objects. You can pass a function as an argument to another function. Modules are first-class objects.
You can pass an entire module as an argument to a function. Classes are first-class objects, and individual

instances of a class are also first-class objects.
This is important, so I'm going to repeat it in case you missed it the first few times: everything in Python is an

object. Strings are objects. Lists are objects. Functions are objects. Classes are objects. Class instances are

objects. Even modules are objects.

43

1.6. INDENTING CODE

Python functions have no explicit begin or end, and no curly braces to mark where the function code starts

and stops. The only delimiter is a colon (:) and the indentation of the code itself.

def approximate size(size, a_kilobyte is 1024 bytes=True): @
if size < 0: @
raise ValueError ('number must be non-negative') ®
@

multiple = 1024 if a_kilobyte is 1024 bytes else 1000
for suffix in SUFFIXES[multiplel: ®

size /= multiple
if size < multiple:

return '{0:.1f} {1}'.format(size, suffix)

raise ValueError ('number too large')

Code blocks are defined by their indentation. By “code block,” | mean functions, if statements, for loops,
while loops, and so forth. Indenting starts a block and unindenting ends it. There are no explicit braces,
brackets, or keywords. This means that whitespace is significant, and must be consistent. In this example, the
function code is indented four spaces. It doesn’t need to be four spaces, it just needs to be consistent. The
first line that is not indented marks the end of the function.

In Python, an if statement is followed by a code block. If the if expression evaluates to true, the indented
block is executed, otherwise it falls to the else block (if any). Note the lack of parentheses around the
expression.

This line is inside the if code block. This raise statement will raise an exception (of type ValueError), but
only if size < 0.

This is not the end of the function. Completely blank lines don’t count. They can make the code more

readable, but they don’t count as code block delimiters. The function continues on the next line.

44

5. The for loop also marks the start of a code block. Code blocks can contain multiple lines, as long as they
are all indented the same amount. This for loop has three lines of code in it. There is no other special

syntax for multi-line code blocks. Just indent and get on with your life.

After some initial protests and several snide analogies to Fortran, you will make peace with this and start
seeing its benefits. One major benefit is that all Python programs look similar, since indentation is a language
requirement and not a matter of style. This makes it easier to read and understand other people’s Python

code.

I<3" Python uses carriage returns to separate statements and a colon and indentation to
separate code blocks. C++ and Java use semicolons to separate statements and curly

braces to separate code blocks.

1.7. EXCEPTIONS

Exceptions are everywhere in Python. Virtually every module in the standard Python library uses them, and
Python itself will raise them in a lot of different circumstances. You’'ll see them repeatedly throughout this

book.

What is an exception? Usually it’s an error, an indication that something went wrong. (Not all exceptions are
errors, but never mind that for now.) Some programming languages encourage the use of error return

codes, which you check. Python encourages the use of exceptions, which you handle.

When an error occurs in the Python Shell, it prints out some details about the exception and how it
happened, and that’s that. This is called an unhandled exception. When the exception was raised, there was
no code to explicitly notice it and deal with it, so it bubbled its way back up to the top level of the Python
Shell, which spits out some debugging information and calls it a day. In the shell, that's no big deal, but if that
happened while your actual Python program was running, the entire program would come to a screeching

halt if nothing handles the exception. Maybe that’s what you want, maybe it isn’t.

45

=3~ Unlike Java, Python functions don’t declare which exceptions they might raise. It's up

to you to determine what possible exceptions you need to catch.

An exception doesn’t need to result in a complete program crash, though. Exceptions can be handled.
Sometimes an exception is really because you have a bug in your code (like accessing a variable that doesn’t
exist), but sometimes an exception is something you can anticipate. If you’re opening a file, it might not
exist. If you’re importing a module, it might not be installed. If you’re connecting to a database, it might be
unavailable, or you might not have the correct security credentials to access it. If you know a line of code

may raise an exception, you should handle the exception using a try...except block.

I<3" Python uses try...except blocks to handle exceptions, and the raise statement to
generate them. Java and C++ use try...catch blocks to handle exceptions, and the

throw statement to generate them.

The approximate_size() function raises exceptions in two different cases: if the given size is larger than

the function is designed to handle, or if it’s less than zero.

if size < O:

raise ValueError ('number must be non-negative')

The syntax for raising an exception is simple enough. Use the raise statement, followed by the exception
name, and an optional human-readable string for debugging purposes. The syntax is reminiscent of calling a
function. (In reality, exceptions are implemented as classes, and this raise statement is actually creating an
instance of the ValueError class and passing the string 'number must be non-negative' to its initialization

method. But we’re getting ahead of ourselves!)

<3~ You don’t need to handle an exception in the function that raises it. If one function
doesn’t handle it, the exception is passed to the calling function, then that function’s
calling function, and so on “up the stack.” If the exception is never handled, your

program will crash, Python will print a “traceback” to standard error, and that’s the

46

end of that. Again, maybe that’s what you want; it depends on what your program

does.

1.7.1. CATCHING IMPORT ERRORS

One of Python’s built-in exceptions is ImportError, which is raised when you try to import a module and

fail. This can happen for a variety of reasons, but the simplest case is when the module doesn’t exist in your

chardet library provides character encoding auto-detection. Perhaps your program wants to use this library

if it exists, but continue gracefully if the user hasn’t installed it. You can do this with a try..except block.

try:
import chardet
except ImportError:

chardet = None

Later, you can check for the presence of the chardet module with a simple if statement:

if chardet:
do something
else:

continue anyway

Another common use of the ImportError exception is when two modules implement a common API, but
one is more desirable than the other. (Maybe it’s faster, or it uses less memory.) You can try to import one

module but fall back to a different module if the first import fails. For example, the XML chapter talks about

two modules that implement a common API, called the ElementTree API. The first, 1xm1, is a third-party
module that you need to download and install yourself. The second, xml.etree.ElementTree, is slower but

is part of the Python 3 standard library.

47

try:
from 1xml import etree
except ImportError:

import xml.etree.ElementTree as etree

By the end of this try..except block, you have imported some module and named it etree. Since both
modules implement a common API, the rest of your code doesn’t need to keep checking which module got
imported. And since the module that did get imported is always called etree, the rest of your code doesn’t

need to be littered with if statements to call differently-named modules.

1.8. UNBOUND VARIABLES

Take another look at this line of code from the approximate_size() function:

multiple = 1024 if a_kilobyte is 1024 bytes else 1000

You never declare the variable multiple, you just assign a value to it. That’'s OK, because Python lets you
do that. What Python will not let you do is reference a variable that has never been assigned a value. Trying

to do so will raise a NameError exception.

>>> X
Traceback (most recent call last):

File "<stdin>", 1line 1, in <module>
NameError: name 'x' is not defined
>>> x =1

>>> X

1

You will thank Python for this one day.

48

1.9. EVERYTHING IS CASE-SENSITIVE

All names in Python are case-sensitive: variable names, function names, class names, module names, exception

names. If you can get it, set it, call it, construct it, import it, or raise it, it's case-sensitive.

>>> an_integer =1

>>> an_integer

1

>>> AN_INTEGER

Traceback (most recent call last):

File "<stdin>", line 1, in <module>
NameError: name 'AN_INTEGER' is not defined
>>> An_Integer
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
NameError: name 'An_Integer' is not defined
>>> an_inteGer
Traceback (most recent call last):

File "<stdin>", line 1, in <module>

NameError: name 'an_inteGer' is not defined

And so on.

49

1.10. RUNNING SCRIPTS

Python modules are objects and have several useful
attributes. You can use this to easily test your modules
as you write them, by including a special block of code
that executes when you run the Python file on the

command line. Take the last few lines of humansize.py:

Everything

if __name__ == '__main__"':

in Python is

an object.

print(approximate_size (1000000000000, False))
print (approximate_size(1000000000000))

I3~ Like c, Python uses == for comparison and = for assignment. Unlike C, Python does

not support in-line assignment, so there’s no chance of accidentally assigning the value

you thought you were comparing.

So what makes this if statement special? Well, modules are objects, and all modules have a built-in attribute
__name__. A module’s _ name__ depends on how you’re using the module. If you import the module, then

__name__is the module’s filename, without a directory path or file extension.
>>> import humansize

>>> humansize.__name__

"humansize'

50

But you can also run the module directly as a standalone program, in which case _ _name__ will be a special
default value, __main__. Python will evaluate this if statement, find a true expression, and execute the if

code block. In this case, to print two values.
c:\home\diveintopython3> c:\python31l\python.exe humansize.py
1.0 TB

931.3 GiB

And that’s your first Python program!

1.11. FURTHER READING

PEP 257: Docstring Conventions explains what distinguishes a good docstring from a great docstring.

Python Tutorial: Documentation Strings also touches on the subject.

PEP 8: Style Guide for Python Code discusses good indentation style.

Python Reference Manual explains what it means to say that everything in Python is an object, because some

51

http://www.python.org/dev/peps/pep-0257/
http://docs.python.org/3.1/tutorial/controlflow.html#documentation-strings
http://www.python.org/dev/peps/pep-0008/
http://docs.python.org/3.1/reference/
http://docs.python.org/3.1/reference/datamodel.html#objects-values-and-types
http://www.douglasadams.com/dna/pedants.html

© N o U K> W

CHAPTER 2. NATIVE DATATYPES

% Wonder is the foundation of all philosophy, inquiry its progress, ignorance its end. *

— Michel de Montaigne

2.1. DIVING IN

atatypes. Set aside your first Python program for just a minute, and let’s talk about datatypes. In

Python, every value has a datatype, but you don’t need to declare the datatype of variables. How does that

work? Based on each variable’s original assignment, Python figures out what type it is and keeps tracks of

that internally.

Python has many native datatypes. Here are the important ones:

Booleans are either True or False.

Strings are sequences of Unicode characters, e.g. an HTML document.
Bytes and byte arrays, e.g. a JPEG image file.

Lists are ordered sequences of values.

Tuples are ordered, immutable sequences of values.

Sets are unordered bags of values.

Dictionaries are unordered bags of key-value pairs.

Of course, there are more types than these. Everything is an object in Python, so there are types like

52

http://en.wikipedia.org/wiki/Complex_number
http://en.wikipedia.org/wiki/Complex_number

Strings and bytes are important enough — and complicated enough — that they get their own chapter. Let’s

look at the others first.

2.2. BOOLEANS

Booleans are either true or false. Python has two
constants, cleverly named True and False, which can be
used to assign boolean values directly. Expressions can
also evaluate to a boolean value. In certain places (like
if statements), Python expects an expression to You Can use

evaluate to a boolean value. These places are called

boolean contexts. You can use virtually any expression in

virtually

a boolean context, and Python will try to determine its

truth value. Different datatypes have different rules

any

about which values are true or false in a boolean

context. (This will make more sense once you see some

expression

concrete examples later in this chapter.)

in a boolean

For example, take this snippet from humansize.py:

context.

if size < O:

raise ValueError ('number must be non-negative')

size is an integer, O is an integer, and < is a numerical operator. The result of the expression size < 0 is

always a boolean. You can test this yourself in the Python interactive shell:

53

>>> size =1
>>> size < 0
False

>>> size = 0
>>> size < 0
False

>>> size = -1
>>> size < 0

True

Due to some legacy issues left over from Python 2, booleans can be treated as numbers. True is 1; False is

0.

>>> True + True

2

>>> True - False

1

>>> True * False

0

>>> True / False

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

ZeroDivisionError: int division or modulo by zero

Ew, ew, ew! Don’t do that. Forget | even mentioned it.

54

2.3. NUMBERS

Numbers are awesome. There are so many to choose from. Python supports both integers and floating point
numbers. There’s no type declaration to distinguish them; Python tells them apart by the presence or

absence of a decimal point.

>>> type(1) @

<class 'int'>

>>> isinstance(1l, int) @
True

>>> 1 + 1 ®
2

>>> 1 + 1.0 <)
2.0

>>> type(2.0)

<class 'float'>

. You can use the type() function to check the type of any value or variable. As you might expect, 1 is an
int.

. Similarly, you can use the isinstance() function to check whether a value or variable is of a given type.
. Adding an int to an int yields an int.

. Adding an int to a float yields a float. Python coerces the int into a float to perform the addition,

then returns a float as the result.

2.3.1. COERCING INTEGERS TO FLOATS AND VICE-VERSA

As you just saw, some operators (like addition) will coerce integers to floating point numbers as needed.

You can also coerce them by yourself.

55

o U A W N

>>> float(2))

2.0

>>> int(2.0) @
2

>>> int(2.5) ©)
2

>>> int(-2.5) @
-2

>>> 1.12345678901234567890 ®
1.1234567890123457
>>> type (1000000000000000) ®

<class 'int'>

. You can explicitly coerce an int to a float by calling the float() function.

Unsurprisingly, you can also coerce a float to an int by calling int().

The int() function will truncate, not round.

The int() function truncates negative numbers towards 0. It’s a true truncate function, not a floor function.
Floating point numbers are accurate to |5 decimal places.

Integers can be arbitrarily large.

I3~ Python 2 had separate types for int and long. The int datatype was limited by

sys.maxint, which varied by platform but was usually 232-1. Python 3 has just one

237 for details.

2.3.2. COMMON NUMERICAL OPERATIONS

You can do all kinds of things with numbers.

56

http://www.python.org/dev/peps/pep-0237
http://www.python.org/dev/peps/pep-0237

>>> 11 / 2)

5.5

>>> 11 // 2 @

>>> =11 // 2 ©)

>>> 11.0 // 2 @

5.0

>>> 11 ** 2 ®
121

>>> 11 % 2 ®
1

The / operator performs floating point division. It returns a float even if both the numerator and
denominator are ints.

The // operator performs a quirky kind of integer division. When the result is positive, you can think of it
as truncating (not rounding) to 0 decimal places, but be careful with that.

. When integer-dividing negative numbers, the // operator rounds “up” to the nearest integer. Mathematically
speaking, it's rounding “down” since -6 is less than -5, but it could trip you up if you were expecting it to
truncate to -5.

The // operator doesn’t always return an integer. If either the numerator or denominator is a float, it will
still round to the nearest integer, but the actual return value will be a float.

The ** operator means “raised to the power of.” 112 is 121.

The % operator gives the remainder after performing integer division. 11 divided by 2 is 5 with a remainder

of 1, so the result here is 1.

I=3" In Python 2, the / operator usually meant integer division, but you could make it

behave like floating point division by including a special directive in your code. In

details.

57

http://www.python.org/dev/peps/pep-0238/

2.3.3. FRACTIONS

Python isn’t limited to integers and floating point numbers. It can also do all the fancy math you learned in

high school and promptly forgot about.

®

>>> import fractions
>>> x = fractions.Fraction(1l, 3) @
>>> X
Fraction(l, 3)
>>> x ¥ 2 ®
Fraction(2, 3)
>>> fractions.Fraction(6, 4) @
Fraction(3, 2)
>>> fractions.Fraction(0, 0) ®
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "fractions.py", line 96, in _ new
raise ZeroDivisionError('Fraction(%s, 0)' % numerator)

ZeroDivisionError: Fraction(@®, 0)

To start using fractions, import the fractions module.

To define a fraction, create a Fraction object and pass in the numerator and denominator.

You can perform all the usual mathematical operations with fractions. Operations return a new Fraction
object. 2 * (1/3) = (2/3)

The Fraction object will automatically reduce fractions. (6/4) = (3/2)

Python has the good sense not to create a fraction with a zero denominator.

2.3.4. TRIGONOMETRY

You can also do basic trigonometry in Python.

58

>>> qmport math

>>> math.pi @
3.1415926535897931

>>> math.sin(math.pi / 2) @
1.0

>>> math.tan(math.pi / 4) ®
0.99999999999999989

I. The math module has a constant for T, the ratio of a circle’s circumference to its diameter.

2. The math module has all the basic trigonometric functions, including sin(), cos(), tan(), and variants like
asin().

3. Note, however, that Python does not have infinite precision. tan(m / 4) should return 1.0, not

0.99999999999999989.

2.3.5. NUMBERS IN A BOOLEAN CONTEXT

You can use numbers in a boolean context, such as an

if statement. Zero values are false, and non-zero values

are true.

Zero values

are false,

and non-
zero values

are true.

59

>>> def is_it_true(anything):)
if anything:
print("yes, it's true")
else:

print("no, it's false")

>>> is_it_true(1) @
yes, it's true

>>> is_ it _true(-1)

yes, it's true

>>> is_it_true(0)

no, it's false

>>> is_it_true(0.1) ®
yes, it's true

>>> js_it_true(0.0)

no, it's false

>>> import fractions

>>> is_it_true(fractions.Fraction(l, 2)) @
yes, it's true

>>> is_it_true(fractions.Fraction(@, 1))

no, it's false

Did you know you can define your own functions in the Python interactive shell? Just press ENTER at the end
of each line, and ENTER on a blank line to finish.

In a boolean context, non-zero integers are true; 0 is false.

Non-zero floating point numbers are true; 0.0 is false. Be careful with this one! If there’s the slightest
rounding error (not impossible, as you saw in the previous section) then Python will be testing
0.0000000000001 instead of 0 and will return True.

Fractions can also be used in a boolean context. Fraction(®, n) is false for all values of n. All other

fractions are true.

60

2.4. LISTS

Lists are Python’s workhorse datatype. When | say “list,” you might be thinking “array whose size | have to
declare in advance, that can only contain items of the same type, &c.” Don’t think that. Lists are much

cooler than that.

I3~ A list in Python is like an array in Perl 5. In Perl 5, variables that store arrays always
start with the @ character; in Python, variables can be named anything, and Python

keeps track of the datatype internally.

I=3" A list in Python is much more than an array in Java (although it can be used as one if
that’s really all you want out of life). A better analogy would be to the ArrayList
class, which can hold arbitrary objects and can expand dynamically as new items are

added.

2.4.1. CREATING A LIST
Creating a list is easy: use square brackets to wrap a comma-separated list of values.

>>> a 1list = ['a', 'b', 'mpilgrim', 'z', 'example'] @

>>> a_list

['a', 'b', 'mpilgrim', 'z', 'example'l]

>>> a list[0] @
g

>>> a3 list[4] ®
"example'

>>> a list[-1] @
"example'

>>> a list[-3] ®
'mpilgrim’

61

I. First, you define a list of five items. Note that they retain their original order. This is not an accident. A list
is an ordered set of items.

2. A list can be used like a zero-based array. The first item of any non-empty list is always a_1ist[0].

3. The last item of this five-item list is a_list[4], because lists are always zero-based.

4. A negative index accesses items from the end of the list counting backwards. The last item of any non-empty
list is always a_list[-1].

5. If the negative index is confusing to you, think of it this way: a_list[-n] == a_list[len(a_list) - n]. So

in this list, a_list[-3] == a_list[5 - 3] == a_list[2].

2.4.2. SLICING A LIST

Once you've defined a list, you can get any part of it as

a new list. This is called slicing the list.

>>> a_list

['a', 'b', 'mpilgrim', 'z', 'example']

a_list[o] is
the first

>>> a list[1:3] @
['b', 'mpilgrim']
>>> a 1list[1:-1] @
['b', 'mpilgrim', 'z'] .
| item of
>>> a 1ist[0:3] ©)
["a', 'b', 'mpilgrim'] .
a_list.

>>> a 1ist[:3] @

['a', 'b', 'mpilgrim']

>>> a list[3:] ®

['z', 'example']

>>> a list[:] ®

['a', 'b', 'mpilgrim', 'z', 'example']

I. You can get a part of a list, called a “slice”, by specifying two indices. The return value is a new list
containing all the items of the list, in order, starting with the first slice index (in this case a_list[1]), up to

but not including the second slice index (in this case a_1list[3]).

62

Slicing works if one or both of the slice indices is negative. If it helps, you can think of it this way: reading
the list from left to right, the first slice index specifies the first item you want, and the second slice index
specifies the first item you don’t want. The return value is everything in between.

Lists are zero-based, so a_1ist[0:3] returns the first three items of the list, starting at a_1ist[0], up to
but not including a_1ist[3].

If the left slice index is O, you can leave it out, and 0 is implied. So a_1ist[:3] is the same as a_list[0:3],
because the starting 0 is implied.

Similarly, if the right slice index is the length of the list, you can leave it out. So a_list[3:] is the same as
a_list[3:5], because this list has five items. There is a pleasing symmetry here. In this five-item list,
a_list[:3] returns the first 3 items, and a_1ist[3:] returns the last two items. In fact, a_list[:n] will
always return the first n items, and a_list[n:] will return the rest, regardless of the length of the list.

If both slice indices are left out, all items of the list are included. But this is not the same as the original
a_list variable. It is a new list that happens to have all the same items. a_1list[:] is shorthand for making

a complete copy of a list.

2.4.3. ADDING ITEMS TO A LIST

There are four ways to add items to a list.

>>> a_list

['a']

>>> a_list = a_list + [2.0, 3] ®
>>> a_list @
['a', 2.0, 3]

>>> a_list.append(True) ©)

>>> a3 list

['a', 2.0, 3, True]

>>> a_list.extend(['four', 'Q']) ®
>>> 3 list

['a', 2.0, 3, True, 'four', 'Q']

>>> a_list.insert(0, 'Q") ®
>>> a list

['a*, 'a', 2.0, 3, True, 'four', 'Q']

63

The + operator concatenates lists to create a new list. A list can contain any number of items; there is no
size limit (other than available memory). However, if memory is a concern, you should be aware that list
concatenation creates a second list in memory. In this case, that new list is immediately assigned to the
existing variable a_list. So this line of code is really a two-step process — concatenation then

assignment — which can (temporarily) consume a lot of memory when you’re dealing with large lists.

A list can contain items of any datatype, and the items in a single list don’t all need to be the same type.
Here we have a list containing a string, a floating point number, and an integer.

The append() method adds a single item to the end of the list. (Now we have four different datatypes in the
list!)

Lists are implemented as classes. “Creating” a list is really instantiating a class. As such, a list has methods
that operate on it. The extend() method takes one argument, a list, and appends each of the items of the
argument to the original list.

The insert() method inserts a single item into a list. The first argument is the index of the first item in the
list that will get bumped out of position. List items do not need to be unique; for example, there are now

two separate items with the value 'Q': the first item, a_1ist[0], and the last item, a_list[6].

[¥ a list.insert(®, value) is like the unshift() function in Perl. It adds an item to
the beginning of the list, and all the other items have their positional index bumped

up to make room.

Let’s look closer at the difference between append() and extend().

64

>>> a_list = ['a', 'b", 'c']

>>> a_list.extend(['d', 'e', '"f'])

>>> a_list

['a', 'b'", 'c', 'd', 'e', '"f']
>>> len(a_list)

6

>>> a_list[-1]

lfl

>>> a list.append(['g', 'h', "i'])

>>> 3 list

['a', 'b", 'c', 'd', 'e', 'f',
>>> len(a_list)

7

>>> a list[-1]

['g', 'h', l.il]

. The extend() method takes a single argument, which is always a list, and adds each of the items of that list

to a_list.

If you start with a list of three items and extend it with a list of another three items, you end up with a list

of six items.

On the other hand, the append() method takes a single argument, which can be any datatype. Here, you're

1]

calling the append () method with a list of three items.

If you start with a list of six items and append a list onto it, you end up with... a list of seven items. Why
seven! Because the last item (which you just appended) is itself a list. Lists can contain any type of data,

including other lists. That may be what you want, or it may not. But it's what you asked for, and it's what

you got.

65

2.4.4. SEARCHING FOR VALUES IN A LIST

>>> a list = ['a', 'b', 'new', 'mpilgrim', 'new']
>>> a list.count('new') @

2

>>> 'new' in a_list @

True

>>> 'c¢' in a_list
False

>>> a list.index('mpilgrim') ®

3
>>> a_list.index('new") @
2
>>> a_list.index('c") ®

Traceback (innermost last):
File "<interactive input>", 1line 1, in ?

ValueError: list.index(x): x not in list

As you might expect, the count () method returns the number of occurrences of a specific value in a list.
If all you want to know is whether a value is in the list or not, the in operator is slightly faster than using
the count () method. The in operator always returns True or False; it will not tell you how many times
the value appears in the list.

Neither the in operator nor the count() method will tell you where in the list a value appears. If you need
to know where in the list a value is, call the index() method. By default it will search the entire list,
although you can specify an optional second argument of the (0-based) index to start from, and even an
optional third argument of the (0-based) index to stop searching.

The index () method finds the first occurrence of a value in the list. In this case, 'new' occurs twice in the
list, in a_list[2] and a_list[4], but the index () method will return only the index of the first
occurrence.

As you might not expect, if the value is not found in the list, the index () method will raise an exception.

Wait, what? That’s right: the index () method raises an exception if it doesn’t find the value in the list. This
is notably different from most languages, which will return some invalid index (like -1). While this may seem

annoying at first, | think you will come to appreciate it. It means your program will crash at the source of

66

the problem instead of failing strangely and silently later. Remember, -1 is a valid list index. If the index ()

method returned -1, that could lead to some not-so-fun debugging sessions!
2.4.5. REMOVING ITEMS FROM A LIST
Lists can expand and contract automatically. You’'ve seen

the expansion part. There are several different ways to

remove items from a list as well.

Lists never

have gaps.

>>> 3 list = ['a', 'b', 'new', 'mpilgrim', 'new']
>>> a_list[1]

!

>>> del a_list[1])

>>> a list

["a', 'new', 'mpilgrim', 'new']
>>> a list[1] @
"new'

I. You can use the del statement to delete a specific item from a list.
2. Accessing index 1 after deleting index 1 does not result in an error. All items after the deleted item shift

their positional index to “fill the gap” created by deleting the item.

Don’t know the positional index? Not a problem; you can remove items by value instead.

67

>>> a_list.remove('new') @

>>> a_list

['a', 'mpilgrim', 'new']

>>> a_list.remove('new') @

>>> a3 list

['a', 'mpilgrim']

>>> a_list.remove('new')

Traceback (most recent call last):

File "<stdin>", 1line 1, in <module>

ValueError: list.remove(x): x not in list

I. You can also remove an item from a list with the remove () method. The remove () method takes a value
and removes the first occurrence of that value from the list. Again, all items after the deleted item will have
their positional indices bumped down to “fill the gap.” Lists never have gaps.

2. You can call the remove () method as often as you like, but it will raise an exception if you try to remove a

value that isn’t in the list.

2.4.6. REMOVING ITEMS FROM A LIST: BONUS ROUND

Another interesting list method is pop (). The pop() method is yet another way to remove items from a list,

but with a twist.

68

>>> a list = ['a', 'b', 'new', 'mpilgrim']
>>> 3a_list.pop() @

'mpilgrim’

>>> a list

['a', 'b', 'new']

>>> a_list.pop(l) @

!

>>> a_list

['a', 'new']

>>> a_list.pop()

new
>>> a list.pop()

g

>>> a list.pop() @

Traceback (most recent call last):
File "<stdin>", 1line 1, in <module>

IndexError: pop from empty 1list

. When called without arguments, the pop () list method removes the last item in the list and returns the value
it removed.

. You can pop arbitrary items from a list. Just pass a positional index to the pop() method. It will remove
that item, shift all the items after it to “fill the gap,” and return the value it removed.

Calling pop () on an empty list raises an exception.

= Calling the pop () list method without an argument is like the pop () function in Perl.
It removes the last item from the list and returns the value of the removed item.
Perl has another function, shift (), which removes the first item and returns its

value; in Python, this is equivalent to a_list.pop(0).

69

2.4.7. LISTS IN A BOOLEAN CONTEXT

You can also use a list in a boolean context, such as an

if statement.

>>> def is_it_true(anything):
if anything: o
Empty lists

print("yes, it's true")

else:

are false; all

print("no, it's false")
s s it true(]) o other lists
no, it's false
are true.

>>> is_it_true(['a'l) @

yes, it's true

>>> is_it_true([Falsel) ©)

yes, it's true

I. In a boolean context, an empty list is false.
2. Any list with at least one item is true.

3. Any list with at least one item is true. The value of the items is irrelevant.

2.5. TUPLES

A tuple is an immutable list. A tuple can not be changed in any way once it is created.

70

>>> a_tuple = ("a", "b", "mpilgrim", "z", "example") @

>>> a_tuple

('a', 'b', 'mpilgrim', 'z', 'example')

>>> a_tuple[0] ?
a

>>> a_tuple[-1] @
"example'

>>> a_tuple[l:3] ®

('b', 'mpilgrim")

. A tuple is defined in the same way as a list, except that the whole set of elements is enclosed in parentheses
instead of square brackets.

The elements of a tuple have a defined order, just like a list. Tuple indices are zero-based, just like a list, so
the first element of a non-empty tuple is always a_tuple[0].

Negative indices count from the end of the tuple, just like a list.

Slicing works too, just like a list. When you slice a list, you get a new list; when you slice a tuple, you get a

new tuple.

The major difference between tuples and lists is that tuples can not be changed. In technical terms, tuples
are immutable. In practical terms, they have no methods that would allow you to change them. Lists have
methods like append(), extend(), insert(), remove(), and pop(). Tuples have none of these methods.
You can slice a tuple (because that creates a new tuple), and you can check whether a tuple contains a

particular value (because that doesn’t change the tuple), and... that’s about it.

71

W

continued from the previous example

>>> a_tuple

('a', 'b', 'mpilgrim', 'z', 'example')

>>> a_tuple.append("new") @
Traceback (innermost last):

File "<interactive input>", line 1, in ?
AttributeError: 'tuple' object has no attribute 'append'
>>> a_tuple.remove("z") @

Traceback (innermost last):
File "<interactive input>", line 1, in ?

AttributeError: 'tuple' object has no attribute 'remove'

>>> a tuple.index("example") ©)
4

>>> "z" in a_tuple <)
True

You can’t add elements to a tuple. Tuples have no append() or extend() method.
You can’t remove elements from a tuple. Tuples have no remove () or pop() method.
You can find elements in a tuple, since this doesn’t change the tuple.

You can also use the in operator to check if an element exists in the tuple.

So what are tuples good for?

Tuples are faster than lists. If you're defining a constant set of values and all you're ever going to do with it
is iterate through it, use a tuple instead of a list.

It makes your code safer if you “write-protect” data that doesn’t need to be changed. Using a tuple instead
of a list is like having an implied assert statement that shows this data is constant, and that special thought
(and a specific function) is required to override that.

Some tuples can be used as dictionary keys (specifically, tuples that contain immutable values like strings,

numbers, and other tuples). Lists can never be used as dictionary keys, because lists are not immutable.

72

Tuples can be converted into lists, and vice-versa. The built-in tuple() function takes
a list and returns a tuple with the same elements, and the 1ist() function takes a
tuple and returns a list. In effect, tuple() freezes a list, and 1ist() thaws a tuple.

2.5.1. TUPLES IN A BOOLEAN CONTEXT

You can use tuples in a boolean context, such as an if statement.

>>> def is_it_true(anything):
if anything:
print("yes, it's true")
else:

print("no, it's false")

>>> is_it_true(()) @
no, it's false

>>> is_it_true(('a', 'b')) @
yes, it's true

>>> is_it_true((False,)) ®
yes, it's true

>>> type((False)) @
<class 'bool'>

>>> type((False,))

<class 'tuple'>

In a boolean context, an empty tuple is false.

. Any tuple with at least one item is true.

Any tuple with at least one item is true. The value of the items is irrelevant. But what’s that comma doing
there!?

To create a tuple of one item, you need a comma after the value. Without the comma, Python just assumes

you have an extra pair of parentheses, which is harmless, but it doesn’t create a tuple.

73

2.5.2. ASSIGNING MULTIPLE VALUES AT ONCE

Here’s a cool programming shortcut: in Python, you can use a tuple to assign multiple values at once.

>>> v = ('a', 2, True)
>>> (X, y, zZ) =V @

>>> X

>>> 7

True

I. v is a tuple of three elements, and (x, y, z) is a tuple of three variables. Assigning one to the other

assigns each of the values of v to each of the variables, in order.

This has all kinds of uses. Suppose you want to assign names to a range of values. You can use the built-in

range () function with multi-variable assignment to quickly assign consecutive values.

>>> (MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY, SUNDAY) = range(7) @
>>> MONDAY @
0

>>> TUESDAY

1

>>> SUNDAY

6

I. The built-in range () function constructs a sequence of integers. (Technically, the range () function returns

THURSDAY, FRIDAY, SATURDAY, and SUNDAY are the variables you're defining. (This example came from the
calendar module, a fun little module that prints calendars, like the UNIX program cal. The calendar
module defines integer constants for days of the week.)

2. Now each variable has its value: MONDAY is O, TUESDAY is 1, and so forth.

74

You can also use multi-variable assignment to build functions that return multiple values, simply by returning

a tuple of all the values. The caller can treat it as a single tuple, or it can assign the values to individual

2.6. SETS

A set is an unordered “bag” of unique values. A single set can contain values of any immutable datatype.

Once you have two sets, you can do standard set operations like union, intersection, and set difference.

2.6.1. CREATING A SET

First things first. Creating a set is easy.

>>> a _set = {1})
>>> a_set

{1}

>>> type(a_set) @

<class 'set'>
>>> a set = {1, 2} ®
>>> a set

{1, 2}
To create a set with one value, put the value in curly brackets ({}).

To create a set with multiple values, separate the values with commas and wrap it all up with curly brackets.

You can also create a set out of a list.

75

»

>>> a list = ['a', 'b', 'mpilgrim', True, False, 42]
>>> a_set = set(a_list) @
>>> a_set @
{'a', False, 'b', True, 'mpilgrim', 42}

>>> a list ®

['a', 'b', 'mpilgrim', True, False, 42]

To create a set from a list, use the set () function. (Pedants who know about how sets are implemented
will point out that this is not really calling a function, but instantiating a class. | promise you will learn the
difference later in this book. For now, just know that set () acts like a function, and it returns a set.)

As | mentioned earlier, a single set can contain values of any datatype. And, as | mentioned earlier, sets are
unordered. This set does not remember the original order of the list that was used to create it. If you were
to add items to this set, it would not remember the order in which you added them.

The original list is unchanged.

Don’t have any values yet? Not a problem. You can create an empty set.

>>> a_set = set() @
>>> a_set @
set()

>>> type(a_set) ©)

<class 'set'>

>>> len(a_set) @
0
>>> not_sure = {} ®

>>> type(not_sure)

<class 'dict'>

To create an empty set, call set() with no arguments.

The printed representation of an empty set looks a bit strange. Were you expecting {}, perhaps? That
would denote an empty dictionary, not an empty set. You'll learn about dictionaries later in this chapter.
Despite the strange printed representation, this is a set...

...and this set has no members.

76

5. Due to historical quirks carried over from Python 2, you can not create an empty set with two curly

brackets. This actually creates an empty dictionary, not an empty set.

2.6.2. MODIFYING A SET

There are two different ways to add values to an existing set: the add() method, and the update() method.

>>> a set = {1, 2}
>>> a_set.add(4) @
>>> a set

{1, 2, 4}

>>> len(a_set) @
3

>>> a_set.add(l) ®
>>> a_set

{1, 2, 4}

>>> len(a_set) @

3

I. The add() method takes a single argument, which can be any datatype, and adds the given value to the set.

2. This set now has 3 members.

3. Sets are bags of unique values. If you try to add a value that already exists in the set, it will do nothing. It
won’t raise an error; it’s just a no-op.

4. This set still has 3 members.

77

>>> a set = {1, 2, 3}

>>> 3 set
{1, 2, 3}
>>> a_set.update({2, 4, 6}) ®
>>> a_set @

{1, 2, 3, 4, 6}

>>> a_set.update({3, 6, 9}, {1, 2, 3, 5, 8, 13}) ®
>>> a_set

{1, 2, 3, 4, 5, 6, 8, 9, 13}

>>> a3 set.update([10, 20, 30]) @
>>> a_set

{1, 2, 3, 4, 5, 6, 8, 9, 10, 13, 20, 30}

. The update () method takes one argument, a set, and adds all its members to the original set. It’s as if you
called the add() method with each member of the set.

Duplicate values are ignored, since sets can not contain duplicates.

. You can actually call the update () method with any number of arguments. When called with two sets, the

update () method adds all the members of each set to the original set (dropping duplicates).

. The update () method can take objects of a number of different datatypes, including lists. When called with

a list, the update () method adds all the items of the list to the original set.

2.6.3. REMOVING ITEMS FROM A SET

There are three ways to remove individual values from a set. The first two, discard() and remove(), have

one subtle difference.

78

>>> a set = {1, 3, 6, 10, 15, 21, 28, 36, 45}
>>> a_set
{1, 3, 36, 6, 10, 45, 15, 21, 28}
>>> a_set.discard(10) @
>>> a3 set
{1, 3, 36, 6, 45, 15, 21, 28}
>>> a_set.discard(10) @
>>> a_set
{1, 3, 36, 6, 45, 15, 21, 28}
>>> a_set.remove(21) ®
>>> a3 set
{1, 3, 36, 6, 45, 15, 28}
>>> a_set.remove(21) @
Traceback (most recent call last):

File "<stdin>", line 1, in <module>

KeyError: 21

. The discard() method takes a single value as an argument and removes that value from the set.

If you call the discard() method with a value that doesn’t exist in the set, it does nothing. No error; it’s
just a no-op.

. The remove () method also takes a single value as an argument, and it also removes that value from the set.
Here’s the difference: if the value doesn’t exist in the set, the remove () method raises a KeyError

exception.

Like lists, sets have a pop() method.

79

3.

>>> a_set = {1, 3, 6, 10, 15, 21, 28, 36, 45}

>>> a_set.pop())

>>> a_set.pop()

>>> a_set.pop()
36
>>> a_set

{6, 10, 45, 15, 21, 28}

>>> a_set.clear() @
>>> a_set

set()

>>> a_set.pop() ©)

Traceback (most recent call last):
File "<stdin>", 1line 1, in <module>

KeyError: 'pop from an empty set'

The pop() method removes a single value from a set and returns the value. However, since sets are
unordered, there is no “last” value in a set, so there is no way to control which value gets removed. It is
completely arbitrary.

The clear () method removes all values from a set, leaving you with an empty set. This is equivalent to
a_set = set(), which would create a new empty set and overwrite the previous value of the a_set
variable.

Attempting to pop a value from an empty set will raise a KeyError exception.

2.6.4. COMMON SET OPERATIONS

Python’s set type supports several common set operations.

80

i > W DN

>>> a set = {2, 4, 5, 9, 12, 21, 30, 51, 76, 127, 195}

>>> 30 in a_set

True

>>> 31 in a_set

False

>>> b set = {1, 2, 3, 5, 6, 8, 9, 12, 15, 17, 18, 21}

>>> a set.union(b_set)

{1, 2, 195, 4, 5, 6, 8, 12, 76, 15, 17, 18, 3, 21, 30, 51, 9, 127}

>>> a set.intersection(b_set) ®
{9, 2, 12, 5, 21}

>>> a_set.difference(b_set) @
{195, 4, 76, 51, 30, 127}

>>> a set.symmetric_difference(b_set) ®
{1, 3, 4, 6, 8, 76, 15, 17, 18, 195, 127, 30, 51}

. To test whether a value is a member of a set, use the in operator. This works the same as lists.

The union() method returns a new set containing all the elements that are in either set.

The intersection() method returns a new set containing all the elements that are in both sets.

The difference() method returns a new set containing all the elements that are in a_set but not b_set.
The symmetric_difference() method returns a new set containing all the elements that are in exactly one

of the sets.

Three of these methods are symmetric.

8l

continued from the previous example
>>> b set.symmetric_difference(a_set) @

{3, 1, 195, 4, 6, 8, 76, 15, 17, 18, 51, 30, 127}

>>> b _set.symmetric_difference(a_set) == a_set.symmetric_difference(b_set) @
True
>>> b set.union(a_set) == a_set.union(b_set) ©
True
>>> b set.intersection(a_set) == a_set.intersection(b_set) @
True
>>> b set.difference(a_set) == a _set.difference(b_set) ®
False

The symmetric difference of a_set from b_set looks different than the symmetric difference of b_set from
a_set, but remember, sets are unordered. Any two sets that contain all the same values (with none left
over) are considered equal.

And that’s exactly what happens here. Don’t be fooled by the Python Shell’s printed representation of these
sets. They contain the same values, so they are equal.

The union of two sets is also symmetric.

The intersection of two sets is also symmetric.

The difference of two sets is not symmetric. That makes sense; it’s analogous to subtracting one number

from another. The order of the operands matters.

Finally, there are a few questions you can ask of sets.

82

>>> a_set {1, 2, 3}

>>> b_set = {1, 2, 3, 4}

>>> a_set.issubset(b_set) @
True

>>> pb_set.issuperset(a_set) @
True

>>> a_set.add(5) ®
>>> a_set.issubset(b_set)

False

>>> b set.issuperset(a_set)

False

I. a_set is a subset of b_set — all the members of a_set are also members of b_set.
2. Asking the same question in reverse, b_set is a superset of a_set, because all the members of a_set are
also members of b_set.

3. As soon as you add a value to a_set that is not in b_set, both tests return False.

2.6.5. SETS IN A BOOLEAN CONTEXT

You can use sets in a boolean context, such as an if statement.

>>> def is_it_true(anything):
if anything:
print("yes, it's true")
else:

print("no, it's false")

>>> is_it_true(set()) ®
no, it's false
>>> qs_it_true({'a'}) @
yes, it's true
>>> is_it_true({False}) ©)

yes, it's true

83

I. In a boolean context, an empty set is false.
2. Any set with at least one item is true.

3. Any set with at least one item is true. The value of the items is irrelevant.

2.7, DICTIONARIES

A dictionary is an unordered set of key-value pairs. When you add a key to a dictionary, you must also add

a value for that key. (You can always change the value later.) Python dictionaries are optimized for retrieving

the value when you know the key, but not the other way around.

I3~ A dictionary in Python is like a hash in Perl 5. In Perl 5, variables that store hashes
always start with a % character. In Python, variables can be named anything, and

Python keeps track of the datatype internally.

2.7.1. CREATING A DICTIONARY

Once you have a dictionary, you can look up values by their key.

84

>>> a dict = {'server': 'db.diveintopython3.org', 'database': 'mysql'} @
>>> a dict

{'server': 'db.diveintopython3.org', 'database': 'mysql'}

>>> a dict['server'])

'db.diveintopython3.org'

>>> a dict['database’] ®
‘mysql’
>>> g dict['db.diveintopython3.org'] @

Traceback (most recent call last):
File "<stdin>", 1line 1, in <module>

KeyError: 'db.diveintopython3.org'

First, you create a new dictionary with two items and assign it to the variable a_dict. Each item is a key-
value pair, and the whole set of items is enclosed in curly braces.

'server' is a key, and its associated value, referenced by a_dict['server'], is
"db.diveintopython3.org'.

'database' is a key, and its associated value, referenced by a_dict['database'], is 'mysql'.

. You can get values by key, but you can’t get keys by value. So a_dict['server'] is
'db.diveintopython3.org', but a_dict['db.diveintopython3.org'] raises an exception, because

'db.diveintopython3.org' is not a key.

2.7.2. MODIFYING A DICTIONARY

Dictionaries do not have any predefined size limit. You can add new key-value pairs to a dictionary at any

time, or you can modify the value of an existing key. Continuing from the previous example:

85

>>> a dict

{'server': 'db.diveintopython3.org', 'database': 'mysql'}
>>> a dict['database'] = 'blog' @

>>> a dict

{'server': 'db.diveintopython3.org', 'database': 'blog'}

>>> a dict['user'] = 'mark' @
>>> a_dict ®
{'server': 'db.diveintopython3.org', 'user': 'mark', 'database': 'blog'}
>>> a dict['user'] = 'dora’ @

>>> a dict

{'server': 'db.diveintopython3.org', 'user': 'dora', 'database': 'blog'}
>>> 3 dict['User'] = 'mark' ®

>>> a dict

{'User': 'mark', 'server': 'db.diveintopython3.org', 'user': 'dora', 'database': 'blog'}

You can not have duplicate keys in a dictionary. Assigning a value to an existing key will wipe out the old
value.

You can add new key-value pairs at any time. This syntax is identical to modifying existing values.

The new dictionary item (key 'user', value 'mark') appears to be in the middle. In fact, it was just a
coincidence that the items appeared to be in order in the first example; it is just as much a coincidence that
they appear to be out of order now.

. Assigning a value to an existing dictionary key simply replaces the old value with the new one.

. WIill this change the value of the user key back to "mark"? No! Look at the key closely — that’s a capital U
in "User". Dictionary keys are case-sensitive, so this statement is creating a new key-value pair, not
overwriting an existing one. It may look similar to you, but as far as Python is concerned, it’s completely

different.

2.7.3. MIXED-VALUE DICTIONARIES

Dictionaries aren’t just for strings. Dictionary values can be any datatype, including integers, booleans,
arbitrary objects, or even other dictionaries. And within a single dictionary, the values don’t all need to be

the same type; you can mix and match as needed. Dictionary keys are more restricted, but they can be

strings, integers, and a few other types. You can also mix and match key datatypes within a dictionary.

86

v > WD

In fact, you've already seen a dictionary with non-string keys and values, in your first Python program.

SUFFIXES = {1066: ['KB', 'MB', 'GB', 'TB', 'PB', 'EB', 'ZB', 'YB'I],

1024: ['KiB', 'MiB', 'GiB', 'TiB', 'PiB', 'EiB', 'ZiB', 'YiB'l}
Let's tear that apart in the interactive shell.

>>> SUFFIXES = {1000: ['KB', 'MB', 'GB', 'TB', 'PB', 'EB', 'ZB', 'YB'I,
1024: ['KiB', 'MiB', 'GiB', 'TiB', 'PiB', 'EiB', 'ZiB', 'YiB'l}

>>> len(SUFFIXES) @

2

>>> 1000 in SUFFIXES @

True

>>> SUFFIXES[1000] ®

['KB', 'MB', 'GB', 'TB', 'PB', 'EB', 'ZB', 'YB']

>>> SUFFIXES[1024] @

['KiB', 'MiB', 'GiB', 'TiB', 'PiB', 'EiB', 'ZiB', 'YiB']

>>> SUFFIXES[1000][3] ®

TR

Like lists and sets, the 1en() function gives you the number of keys in a dictionary.
And like lists and sets, you can use the in operator to test whether a specific key is defined in a dictionary.
1000 is a key in the SUFFIXES dictionary; its value is a list of eight items (eight strings, to be precise).
Similarly, 1024 is a key in the SUFFIXES dictionary; its value is also a list of eight items.

Since SUFFIXES[1000] is a list, you can address individual items in the list by their 0-based index.

87

2.7.4. DICTIONARIES IN A BOOLEAN CONTEXT

You can also use a dictionary in a boolean context, such

as an if statement.

>>> def is_it_true(anything):

if anything: Empty

print("yes, it's true")

else:

dictionaries

print("no, it's false")

are false; all

>>> is_it_true({}) @

no, it's false

other

>>> is it _true({'a': 1}) @

yes, it's true

dictionaries

I. In a boolean context, an empty dictionary is false.

are true.

2. Any dictionary with at least one key-value pair is true.

2.8. None

None is a special constant in Python. It is a null value. None is not the same as False. None is not 0. None is

not an empty string. Comparing None to anything other than None will always return False.

None is the only null value. It has its own datatype (NoneType). You can assign None to any variable, but you

can not create other NoneType objects. All variables whose value is None are equal to each other.

88

>>> type(None)
<class 'NoneType'>
>>> None == False
False

>>> None == 0
False

>>> None == "'
False

>>> None == None
True

>>> X

I}
=
o
=}
[}

>>> x == None
True

>>>y

I
=
o
j
D

2.8.1. None IN A BOOLEAN CONTEXT

In a boolean context, None is false and not None is true.

>>> def is_it_true(anything):
if anything:
print("yes, it's true")
else:

print("no, it's false")

>>> is_it_true(None)
no, it's false
>>> is_it_true(not None)

yes, it's true

89

2.9. FURTHER READING

Boolean operations

Numeric types

Sequence types

Mapping types

fractions module

math module

PEP 237: Unifying Long Integers and Integers

PEP 238: Changing the Division Operator

90

http://docs.python.org/3.1/library/stdtypes.html#boolean-operations-and-or-not
http://docs.python.org/3.1/library/stdtypes.html#numeric-types-int-float-long-complex
http://docs.python.org/3.1/library/stdtypes.html#sequence-types-str-unicode-list-tuple-buffer-xrange
http://docs.python.org/3.1/library/stdtypes.html#set-types-set-frozenset
http://docs.python.org/3.1/library/stdtypes.html#mapping-types-dict
http://docs.python.org/3.1/library/fractions.html
http://docs.python.org/3.1/library/math.html
http://www.python.org/dev/peps/pep-0237/
http://www.python.org/dev/peps/pep-0238/

CHAPTER 3. COMPREHENSIONS

% Qur imagination is stretched to the utmost, not, as in fiction, to imagine things which are not really there, but just
to comprehend those things which are. *

— Richard Feynman

3.1. DIVING IN

very programming language has that one feature, a complicated thing intentionally made simple. If
you’re coming from another language, you could easily miss it, because your old language didn’t make that
thing simple (because it was busy making something else simple instead). This chapter will teach you about
list comprehensions, dictionary comprehensions, and set comprehensions: three related concepts centered
around one very powerful technique. But first, | want to take a little detour into two modules that will help

you navigate your local file system.

3.2. WORKING WITH FILES AND DIRECTORIES

operating systems so your programs can run on any computer with as little platform-specific code as

possible.

91

http://en.wikiquote.org/wiki/Richard_Feynman
http://docs.python.org/3.1/library/os.html

3.2.1. THE CURRENT WORKING DIRECTORY

When you're just getting started with Python, you're going to spend a lot of time in the Python Shell.

Throughout this book, you will see examples that go like this:

. Import one of the modules in the examples folder

. Call a function in that module

. Explain the result

If you don’t know about the current working directory,

step | will probably fail with an ImportError. Why?

import search path, but it won’t find it because the

examples folder isn’t one of the directories in the

There is

search path. To get past this, you can do one of two
things:

always a

. Add the examples folder to the import search path

current

. Change the current working directory to the examples

folder

working

The current working directory is an invisible property

directory.

that Python holds in memory at all times. There is

always a current working directory, whether you're in

the Python Shell, running your own Python script from
the command line, or running a Python CGI script on a

web server somewhere.

The os module contains two functions to deal with the current working directory.

92

build/examples

C)

>>> import os
>>> print(os.getcwd()) @
C:\Python31

>>> os.chdir('/Users/pilgrim/diveintopython3/examples') ®
>>> print(os.getcwd()) ®

C:\Users\pilgrim\diveintopython3\examples

. The os module comes with Python; you can import it anytime, anywhere.

Use the os.getcwd () function to get the current working directory. When you run the graphical Python
Shell, the current working directory starts as the directory where the Python Shell executable is. On
Windows, this depends on where you installed Python; the default directory is c:\Python31. If you run the
Python Shell from the command line, the current working directory starts as the directory you were in
when you ran python3.

Use the os.chdir () function to change the current working directory.

. When | called the os.chdir () function, | used a Linux-style pathname (forward slashes, no drive letter) even
though I'm on Windows. This is one of the places where Python tries to paper over the differences between

operating systems.

3.2.2. WORKING WITH FILENAMES AND DIRECTORY NAMES

While we’re on the subject of directories, | want to point out the os.path module. os.path contains

functions for manipulating filenames and directory names.

>>> import os

>>> print(os.path.join('/Users/pilgrim/diveintopython3/examples/', 'humansize.py'))
/Users/pilgrim/diveintopython3/examples/humansize.py

>>> print(os.path.join('/Users/pilgrim/diveintopython3/examples', 'humansize.py'))
/Users/pilgrim/diveintopython3/examples\humansize.py

>>> print(os.path.expanduser('~"))

c:\Users\pilgrim

>>> print(os.path.join(os.path.expanduser('~'), 'diveintopython3', 'examples', 'humansize.py';

c:\Users\pilgrim\diveintopython3\examples\humansize.py

93

I. The os.path.join() function constructs a pathname out of one or more partial pathnames. In this case, it
simply concatenates strings.

2. In this slightly less trivial case, calling the os.path.join() function will add an extra slash to the pathname
before joining it to the filename. It’s a backslash instead of a forward slash, because | constructed this
example on Windows. If you replicate this example on Linux or Mac OS X, you’ll see a forward slash
instead. Don’t fuss with slashes; always use os.path.join() and let Python do the right thing.

3. The os.path.expanduser () function will expand a pathname that uses ~ to represent the current user’s
home directory. This works on any platform where users have a home directory, including Linux, Mac OS X,
and Windows. The returned path does not have a trailing slash, but the os.path.join() function doesn’t
mind.

4. Combining these techniques, you can easily construct pathnames for directories and files in the user’s home
directory. The os.path.join() function can take any number of arguments. | was overjoyed when |
discovered this, since addSlashIfNecessary () is one of the stupid little functions | always need to write
when building up my toolbox in a new language. Do not write this stupid little function in Python; smart

people have already taken care of it for you.

os.path also contains functions to split full pathnames, directory names, and filenames into their constituent

parts.
>>> pathname = '/Users/pilgrim/diveintopython3/examples/humansize.py'
>>> os.path.split(pathname))
("/Users/pilgrim/diveintopython3/examples', 'humansize.py')
>>> (dirname, filename) = os.path.split(pathname) @
>>> dirname ®

"/Users/pilgrim/diveintopython3/examples'

>>> filename @
"humansize.py'

>>> (shortname, extension) = os.path.splitext(filename) ®
>>> shortname

"humansize'

>>> extension

-PYy

I. The split function splits a full pathname and returns a tuple containing the path and filename.

94

Remember when | said you could use multi-variable assignment to return multiple values from a function?

The os.path.split() function does exactly that. You assign the return value of the split function into a
tuple of two variables. Each variable receives the value of the corresponding element of the returned tuple.
. The first variable, dirname, receives the value of the first element of the tuple returned from the
os.path.split() function, the file path.

. The second variable, filename, receives the value of the second element of the tuple returned from the
os.path.split() function, the filename.

os.path also contains the os.path.splitext() function, which splits a filename and returns a tuple
containing the filename and the file extension. You use the same technique to assign each of them to

separate variables.

3.2.3. LISTING DIRECTORIES

The glob module is another tool in the Python standard library. It’s an easy way to get the contents of a
directory programmatically, and it uses the sort of wildcards that you may already be familiar with from

working on the command line.

The glob

module uses
shell-like

wildcards.

95

>>> os.chdir('/Users/pilgrim/diveintopython3/")

>>> import glob

>>> glob.glob('examples/*.xml"))

['examples\\feed-broken.xml',
"examples\\feed-ns@.xml",

"examples\\feed.xml']

®

>>> os.chdir('examples/")
>>> glob.glob('*test*.py") ©
['alphameticstest.py',

'pluraltestl.py’,

'pluraltest2.py',

'pluraltest3.py’',

'pluraltestd.py',

'pluraltest5.py',

'pluraltest6.py’,

'romantestl.py',

'romantestl0.py',

'romantest2.py',

'romantest3.py',

'romantestd.py',

'romantest5.py',

'romantest6.py',

'romantest7.py',

'romantest8.py',

'romantest9.py']

The glob module takes a wildcard and returns the path of all files and directories matching the wildcard. In
this example, the wildcard is a directory path plus “*.xm1”, which will match all .xm1 files in the examples
subdirectory.

Now change the current working directory to the examples subdirectory. The os.chdir () function can
take relative pathnames.

You can include multiple wildcards in your glob pattern. This example finds all the files in the current

working directory that end in a .py extension and contain the word test anywhere in their filename.

96

3.2.4. GETTING FILE METADATA

Every modern file system stores metadata about each file: creation date, last-modified date, file size, and so
on. Python provides a single APl to access this metadata. You don’t need to open the file; all you need is

the filename.

>>> import os

>>> print(os.getcwd()) @
c:\Users\pilgrim\diveintopython3\examples

>>> metadata = os.stat('feed.xml') @

>>> metadata.st_mtime ®

1247520344 .9537716

>>> import time @

>>> time.localtime(metadata.st_mtime) ®
time.struct_time(tm_year=2009, tm_mon=7, tm_mday=13, tm_hour=17,

tm_min=25, tm_sec=44, tm_wday=0, tm_yday=194, tm_isdst=1)

The current working directory is the examples folder.

feed.xml is a file in the examples folder. Calling the os.stat() function returns an object that contains
several different types of metadata about the file.

st_mtime is the modification time, but it’s in a format that isn’t terribly useful. (Technically, it’s the number
of seconds since the Epoch, which is defined as the first second of January Ist, 1970. Seriously.)

The time module is part of the Python standard library. It contains functions to convert between different
time representations, format time values into strings, and fiddle with timezones.

The time.localtime() function converts a time value from seconds-since-the-Epoch (from the st_mtime
property returned from the os.stat() function) into a more useful structure of year, month, day, hour,

minute, second, and so on. This file was last modified on July 13, 2009, at around 5:25 PM.

continued from the previous example

>>> metadata.st_size @
3070

>>> import humansize

>>> humansize.approximate size(metadata.st _size) @

'3.0 KiB'

97

The os.stat() function also returns the size of a file, in the st_size property. The file feed.xml is 3070
bytes.

You can pass the st_size property to the approximate size() function.

3.2.5. CONSTRUCTING ABSOLUTE PATHNAMES

In the previous section, the glob.glob() function returned a list of relative pathnames. The first example

had pathnames like 'examples\feed.xml', and the second example had even shorter relative pathnames like
'romantestl.py'. As long as you stay in the same current working directory, these relative pathnames will
work for opening files or getting file metadata. But if you want to construct an absolute pathname —i.e. one
that includes all the directory names back to the root directory or drive letter — then you’ll need the

os.path.realpath() function.

>>> import os

>>> print(os.getcwd())
c:\Users\pilgrim\diveintopython3\examples
>>> print(os.path.realpath('feed.xml'))

c:\Users\pilgrim\diveintopython3\examples\feed.xml

98

3.3. LIST COMPREHENSIONS

A list comprehension provides a compact way of
mapping a list into another list by applying a function to

each of the elements of the list.

>>> a_list = [1, 9, 8, 4]

You can use
any Python
expression

in a list

comprehension.

>>> [elem * 2 for elem in a_list] @
[2, 18, 16, 8]

>>> a_list @
[1, 9, 8, 4]

>>> a_list = [elem * 2 for elem in a_list] ®
>>> a list

[2, 18, 16, 8]

I. To make sense of this, look at it from right to left. a_1list is the list you’re mapping. The Python
interpreter loops through a_list one element at a time, temporarily assigning the value of each element to
the variable elem. Python then applies the function elem * 2 and appends that result to the returned list.

2. A list comprehension creates a new list; it does not change the original list.

3. It is safe to assign the result of a list comprehension to the variable that you’re mapping. Python constructs
the new list in memory, and when the list comprehension is complete, it assigns the result to the original

variable.

99

You can use any Python expression in a list comprehension, including the functions in the os module for

manipulating files and directories.

>>> import os, glob

>>> glob.glob('*.xml"))
['feed-broken.xml', 'feed-ns@.xml', 'feed.xml']

>>> [os.path.realpath(f) for f in glob.glob('*.xml')] @
['c:\\Users\\pilgrim\\diveintopython3\\examples\\feed-broken.xml"',
"c:\\Users\\pilgrim\\diveintopython3\\examples\\feed-ns0O.xml",

"c:\\Users\\pilgrim\\diveintopython3\\examples\\feed.xml']

I. This returns a list of all the .xm1 files in the current working directory.

2. This list comprehension takes that list of .xm1 files and transforms it into a list of full pathnames.

List comprehensions can also filter items, producing a result that can be smaller than the original list.

>>> qmport os, glob
>>> [f for f in glob.glob('*.py') if os.stat(f).st size > 6000] @
["'pluraltest6.py’,

"romantestl10.py’',

'romantest6.py’,

'romantest7.py’',

'romantest8.py',

"romantest9.py']

I. To filter a list, you can include an if clause at the end of the list comprehension. The expression after the
if keyword will be evaluated for each item in the list. If the expression evaluates to True, the item will be
included in the output. This list comprehension looks at the list of all .py files in the current directory, and
the if expression filters that list by testing whether the size of each file is greater than 6000 bytes. There

are six such files, so the list comprehension returns a list of six filenames.

All the examples of list comprehensions so far have featured simple expressions — multiply a number by a
constant, call a single function, or simply return the original list item (after filtering). But there’s no limit to

how complex a list comprehension can be.

100

>>> import os, glob
>>> [(os.stat(f).st_size, os.path.realpath(f)) for f in glob.glob('*.xml")])
[(3074, 'c:\\Users\\pilgrim\\diveintopython3\\examples\\feed-broken.xml"),

(3386, 'c:\\Users\\pilgrim\\diveintopython3\\examples\\feed-ns®.xml'),

(3070, 'c:\\Users\\pilgrim\\diveintopython3\\examples\\feed.xml"')]
>>> import humansize
>>> [(humansize.approximate size(os.stat(f).st _size), f) for f in glob.glob('*.xm1')] @
[('3.0 KiB', 'feed-broken.xml'),

('3.3 KiB', 'feed-ns@.xml'),

('3.0 KiB', 'feed.xml')]

I. This list comprehension finds all the .xm1 files in the current working directory, gets the size of each file (by
calling the os.stat () function), and constructs a tuple of the file size and the absolute path of each file (by
calling the os.path.realpath() function).

2. This comprehension builds on the previous one to call the approximate size() function with the file size

of each .xm1 file.

3.4. DICTIONARY COMPREHENSIONS

A dictionary comprehension is like a list comprehension, but it constructs a dictionary instead of a list.

101

>>> import os, glob
>>> metadata = [(f, os.stat(f)) for f in glob.glob('*test*.py')])
>>> metadatal0] @
('alphameticstest.py', nt.stat _result(st_mode=33206, st _ino=0, st _dev=0,
st _nlink=0, st _uid=0, st _gid=0, st _size=2509, st _atime=1247520344,
st mtime=1247520344, st ctime=1247520344))
>>> metadata_dict = {f:os.stat(f) for f in glob.glob('*test*.py')} ®
>>> type(metadata_dict) @
<class 'dict'>
>>> list(metadata dict.keys()) ®
['romantest8.py', 'pluraltestl.py', 'pluraltest2.py', 'pluraltest5.py',
"'pluraltest6.py', 'romantest7.py', 'romantestlO.py', 'romantest4.py',
'romantest9.py', 'pluraltest3.py', 'romantestl.py', 'romantest2.py',
"romantest3.py', 'romantest5.py', 'romantest6.py', 'alphameticstest.py',
"pluraltestd.py']
>>> metadata_dict['alphameticstest.py'].st size ®
2509

This is not a dictionary comprehension; it’s a list comprehension. It finds all .py files with test in their

name, then constructs a tuple of the filename and the file metadata (from calling the os.stat () function).
Each item of the resulting list is a tuple.

This is a dictionary comprehension. The syntax is similar to a list comprehension, with two differences. First,
it is enclosed in curly braces instead of square brackets. Second, instead of a single expression for each item,
it contains two expressions separated by a colon. The expression before the colon (f in this example) is the
dictionary key; the expression after the colon (os.stat(f) in this example) is the value.

. A dictionary comprehension returns a dictionary.

The keys of this particular dictionary are simply the filenames returned from the call to
glob.glob('*test*.py').

The value associated with each key is the return value from the os.stat() function. That means we can
“look up” a file by name in this dictionary to get its file metadata. One of the pieces of metadata is st_size,

the file size. The file alphameticstest.py is 2509 bytes long.

Like list comprehensions, you can include an if clause in a dictionary comprehension to filter the input

sequence based on an expression which is evaluated with each item.

102

>>> import os, glob, humansize

>>> metadata_dict = {f:os.stat(f) for f in glob.glob('*')}

>>> humansize_dict = {os.path.splitext(f)[0]:humansize.approximate_size(meta.st _size) \
for f, meta in metadata_dict.items() if meta.st_size > 6000}

>>> list(humansize_dict.keys())

['romantest9', 'romantest8', 'romantest7', 'romantest6', 'romantestl0', 'pluraltest6']

>>> humansize_dict['romantest9']

'6.5 KiB'

. This dictionary comprehension constructs a list of all the files in the current working directory
(glob.glob('*')), gets the file metadata for each file (os.stat(f)), and constructs a dictionary whose keys
are filenames and whose values are the metadata for each file.

. This dictionary comprehension builds on the previous comprehension, filters out files smaller than 6000 bytes
(if meta.st_size > 6000), and uses that filtered list to construct a dictionary whose keys are the filename
minus the extension (os.path.splitext(f)[0]) and whose values are the approximate size of each file
(humansize.approximate_size(meta.st_size)).

. As you saw in a previous example, there are six such files, thus there are six items in this dictionary.

. The value of each key is the string returned from the approximate_size() function.

3.4.1. OTHER FUN STUFF TO DO WITH DICTIONARY COMPREHENSIONS

Here’s a trick with dictionary comprehensions that might be useful someday: swapping the keys and values of

a dictionary.
>>> a dict = {'a': 1, 'b': 2, 'c': 3}
>>> {value:key for key, value in a dict.items()}

{1: 'a', 2: 'b', 3: 'c'}

Of course, this only works if the values of the dictionary are immutable, like strings or tuples. If you try this

with a dictionary that contains lists, it will fail most spectacularly.

103

>>> a_dict = {'a': [1, 2, 3], 'b': 4, 'c': 5}
>>> {value:key for key, value in a_dict.items()}
Traceback (most recent call last):

File "<stdin>", line 1, in <module>

File "<stdin>", 1ine 1, in <dictcomp>

TypeError: unhashable type: 'list'

3.5. SET COMPREHENSIONS

Not to be left out, sets have their own comprehension syntax as well. It is remarkably similar to the syntax

for dictionary comprehensions. The only difference is that sets just have values instead of key:value pairs.

>>> a set = set(range(10))

>>> a_set

{6, 1, 2, 3, 4, 5, 6, 7, 8, 9}

>>> {x ** 2 for x in a_set})
{6, 1, 4, 81, 64, 9, 16, 49, 25, 36}

>>> {x for x in a_set if x % 2 == 0} @
{6, 8, 2, 4, 6}

>>> {2**x for x in range(10)} ©)
{32, 1, 2, 4, 8, 64, 128, 256, 16, 512}

Set comprehensions can take a set as input. This set comprehension calculates the squares of the set of
numbers from 0 to 9.

Like list comprehensions and dictionary comprehensions, set comprehensions can contain an if clause to
filter each item before returning it in the result set.

Set comprehensions do not need to take a set as input; they can take any sequence.

104

3.6. FURTHER READING

os module

os — Portable access to operating system specific features

os.path module

os.path — Platform-independent manipulation of file names

glob module

glob — Filename pattern matching

time module

time — Functions for manipulating clock time

List comprehensions

Nested list comprehensions

Looping techniques

105

http://docs.python.org/3.1/library/os.html
http://www.doughellmann.com/PyMOTW/os/
http://docs.python.org/3.1/library/os.path.html
http://www.doughellmann.com/PyMOTW/ospath/
http://docs.python.org/3.1/library/glob.html
http://www.doughellmann.com/PyMOTW/glob/
http://docs.python.org/3.1/library/time.html
http://www.doughellmann.com/PyMOTW/time/
http://docs.python.org/3.1/tutorial/datastructures.html#list-comprehensions
http://docs.python.org/3.1/tutorial/datastructures.html#nested-list-comprehensions
http://docs.python.org/3.1/tutorial/datastructures.html#looping-techniques

CHAPTER 4. STRINGS

% I'm telling you this ’cause you’re one of my friends.
My alphabet starts where your alphabet ends! *

— Dr. Seuss, On Beyond Zebra!

4.1. SOME BORING STUFF YOU NEED TO UNDERSTAND BEFORE YOU
CAN DIVE IN

ew people think about it, but text is incredibly complicated. Start with the alphabet. The people of

AEG I K O P RS T, U and V. On the other end of the spectrum, languages like Chinese, Japanese,
and Korean have thousands of characters. English, of course, has 26 letters — 52 if you count uppercase and

lowercase separately — plus a handful of /@#8%c& punctuation marks.

When you talk about “text,” you’re probably thinking of “characters and symbols on my computer screen.”
But computers don’t deal in characters and symbols; they deal in bits and bytes. Every piece of text you've
ever seen on a computer screen is actually stored in a particular character encoding. Very roughly speaking,
the character encoding provides a mapping between the stuff you see on your screen and the stuff your
computer actually stores in memory and on disk. There are many different character encodings, some
optimized for particular languages like Russian or Chinese or English, and others that can be used for

multiple languages.

In reality, it's more complicated than that. Many characters are common to multiple encodings, but each
encoding may use a different sequence of bytes to actually store those characters in memory or on disk. So
you can think of the character encoding as a kind of decryption key. Whenever someone gives you a
sequence of bytes — a file, a web page, whatever — and claims it’s “text,” you need to know what character
encoding they used so you can decode the bytes into characters. If they give you the wrong key or no key
at all, you're left with the unenviable task of cracking the code yourself. Chances are you’ll get it wrong, and

the result will be gibberish.

106

http://en.wikipedia.org/wiki/Bougainville_Province
http://en.wikipedia.org/wiki/Rotokas_alphabet

Surely you’ve seen web pages like this, with strange
question-mark-like characters where apostrophes should
be. That usually means the page author didn’t declare
their character encoding correctly, your browser was

left guessing, and the result was a mix of expected and

Everything

unexpected characters. In English it’s merely annoying; in

other languages, the result can be completely

you thought

unreadable.

you knew

There are character encodings for each major language

in the world. Since each language is different, and

about

memory and disk space have historically been expensive,
each character encoding is optimized for a particular . .
language. By that, | mean each encoding using the same Strlngs 1S
numbers (0—255) to represent that language’s characters.
For instance, you're probably familiar with the ASCII wrong‘
encoding, which stores English characters as numbers

ranging from 0 to 127. (65 is capital “A”, 97 is

lowercase “a”, &c.) English has a very simple alphabet,
so it can be completely expressed in less than 128 numbers. For those of you who can count in base 2,

that’s 7 out of the 8 bits in a byte.

Western European languages like French, Spanish, and German have more letters than English. Or, more
precisely, they have letters combined with various diacritical marks, like the i character in Spanish. The most
common encoding for these languages is CP-1252, also called “windows-1252" because it is widely used on
Microsoft Windows. The CP-1252 encoding shares characters with ASCII in the 0—127 range, but then
extends into the 128-255 range for characters like n-with-a-tilde-over-it (241), u-with-two-dots-over-it (252),

&ec. It’s still a single-byte encoding, though; the highest possible number, 255, still fits in one byte.

Then there are languages like Chinese, Japanese, and Korean, which have so many characters that they
require multiple-byte character sets. That is, each “character” is represented by a two-byte number from
0-65535. But different multi-byte encodings still share the same problem as different single-byte encodings,
namely that they each use the same numbers to mean different things. It’s just that the range of numbers is

broader, because there are many more characters to represent.

107

That was mostly OK in a non-networked world, where “text” was something you typed yourself and
occasionally printed. There wasn’t much “plain text”. Source code was ASCII, and everyone else used word
processors, which defined their own (non-text) formats that tracked character encoding information along
with rich styling, &c. People read these documents with the same word processing program as the original

author, so everything worked, more or less.

Now think about the rise of global networks like email and the web. Lots of “plain text” flying around the
globe, being authored on one computer, transmitted through a second computer, and received and displayed
by a third computer. Computers can only see numbers, but the numbers could mean different things. Oh no!
What to do? Well, systems had to be designed to carry encoding information along with every piece of
“plain text.” Remember, it’s the decryption key that maps computer-readable numbers to human-readable

characters. A missing decryption key means garbled text, gibberish, or worse.

Now think about trying to store multiple pieces of text in the same place, like in the same database table
that holds all the email you’ve ever received. You still need to store the character encoding alongside each
piece of text so you can display it properly. Think that’s hard? Try searching your email database, which

means converting between multiple encodings on the fly. Doesn’t that sound fun?

Now think about the possibility of multilingual documents, where characters from several languages are next
to each other in the same document. (Hint: programs that tried to do this typically used escape codes to
switch “modes.” Poof, you're in Russian koi8-r mode, so 24| means f; poof, now you’re in Mac Greek

mode, so 241 means wW.) And of course you'll want to search those documents, too.

Now cry a lot, because everything you thought you knew about strings is wrong, and there ain’t no such

thing as “plain text.”

4.2. UNICODE

Enter Unicode.

108

Unicode is a system designed to represent every character from every language. Unicode represents each
letter, character, or ideograph as a 4-byte number. Each number represents a unique character used in at
least one of the world’s languages. (Not all the numbers are used, but more than 65535 of them are, so 2
bytes wouldn’t be sufficient.) Characters that are used in multiple languages generally have the same number,
unless there is a good etymological reason not to. Regardless, there is exactly | number per character, and
exactly | character per number. Every number always means just one thing; there are no “modes” to keep

track of. U+0041 is always 'A', even if your language doesn’t have an 'A' in it.

On the face of it, this seems like a great idea. One encoding to rule them all. Multiple languages per
document. No more “mode switching” to switch between encodings mid-stream. But right away, the obvious
question should leap out at you. Four bytes? For every single character? That seems awfully wasteful,
especially for languages like English and Spanish, which need less than one byte (256 numbers) to express
every possible character. In fact, it's wasteful even for ideograph-based languages (like Chinese), which never

need more than two bytes per character.

There is a Unicode encoding that uses four bytes per character. It’s called UTF-32, because 32 bits = 4
bytes. UTF-32 is a straightforward encoding; it takes each Unicode character (a 4-byte number) and
represents the character with that same number. This has some advantages, the most important being that
you can find the Nth character of a string in constant time, because the Nth character starts at the 4xNth
byte. It also has several disadvantages, the most obvious being that it takes four freaking bytes to store every

freaking character.

Even though there are a lot of Unicode characters, it turns out that most people will never use anything
beyond the first 65535. Thus, there is another Unicode encoding, called UTF-16 (because 16 bits = 2 bytes).
UTF-16 encodes every character from 0—65535 as two bytes, then uses some dirty hacks if you actually need
to represent the rarely-used “astral plane” Unicode characters beyond 65535. Most obvious advantage:
UTF-16 is twice as space-efficient as UTF-32, because every character requires only two bytes to store
instead of four bytes (except for the ones that don’t). And you can still easily find the Nth character of a
string in constant time, if you assume that the string doesn’t include any astral plane characters, which is a

good assumption right up until the moment that it’s not.
But there are also non-obvious disadvantages to both UTF-32 and UTF-16. Different computer systems store
individual bytes in different ways. That means that the character U+4E2D could be stored in UTF-16 as either

4E 2D or 2D 4E, depending on whether the system is big-endian or little-endian. (For UTF-32, there are even

109

more possible byte orderings.) As long as your documents never leave your computer, you're

safe — different applications on the same computer will all use the same byte order. But the minute you
want to transfer documents between systems, perhaps on a world wide web of some sort, you're going to
need a way to indicate which order your bytes are stored. Otherwise, the receiving system has no way of

knowing whether the two-byte sequence 4E 2D means U+4E2D or U+2D4E.

To solve this problem, the multi-byte Unicode encodings define a “Byte Order Mark,” which is a special non-
printable character that you can include at the beginning of your document to indicate what order your
bytes are in. For UTF-16, the Byte Order Mark is U+FEFF. If you receive a UTF-16 document that starts
with the bytes FF FE, you know the byte ordering is one way; if it starts with FE FF, you know the byte

ordering is reversed.

Still, UTF-16 isn’t exactly ideal, especially if you're dealing with a lot of ASCII characters. If you think about
it, even a Chinese web page is going to contain a lot of ASCII characters — all the elements and attributes
surrounding the printable Chinese characters. Being able to find the Nth character in constant time is nice,
but there’s still the nagging problem of those astral plane characters, which mean that you can’t guarantee

that every character is exactly two bytes, so you can’t really find the Nth character in constant time unless

you maintain a separate index. And boy, there sure is a lot of ASCII text in the world...

Other people pondered these questions, and they came up with a solution:

UTF-8

110

UTF-8 is a variable-length encoding system for Unicode. That is, different characters take up a different
number of bytes. For ASCII characters (A-Z, &c.) UTF-8 uses just one byte per character. In fact, it uses
the exact same bytes; the first 128 characters (0—127) in UTF-8 are indistinguishable from ASCIl. “Extended
Latin” characters like i and 6 end up taking two bytes. (The bytes are not simply the Unicode code point
like they would be in UTF-16; there is some serious bit-twiddling involved.) Chinese characters like #' end

up taking three bytes. The rarely-used “astral plane” characters take four bytes.

Disadvantages: because each character can take a different number of bytes, finding the Nth character is an
O(N) operation — that is, the longer the string, the longer it takes to find a specific character. Also, there is

bit-twiddling involved to encode characters into bytes and decode bytes into characters.

Advantages: super-efficient encoding of common ASCII characters. No worse than UTF-16 for extended Latin
characters. Better than UTF-32 for Chinese characters. Also (and you’ll have to trust me on this, because
I’'m not going to show you the math), due to the exact nature of the bit twiddling, there are no byte-

ordering issues. A document encoded in UTF-8 uses the exact same stream of bytes on any computer.

4.3. DIVING IN

In Python 3, all strings are sequences of Unicode characters. There is no such thing as a Python string
encoded in UTF-8, or a Python string encoded as CP-1252. “Is this string UTF-8?" is an invalid question.
UTF-8 is a way of encoding characters as a sequence of bytes. If you want to take a string and turn it into a
sequence of bytes in a particular character encoding, Python 3 can help you with that. If you want to take a
sequence of bytes and turn it into a string, Python 3 can help you with that too. Bytes are not characters;

bytes are bytes. Characters are an abstraction. A string is a sequence of those abstractions.

>>> s = "JFA Python')

>>> len(s) @
9

>>> 5[0] ©)
P

>>> g + ' 3! @

"YRA Python 3'

. To create a string, enclose it in quotes. Python strings can be defined with either single quotes (') or double
quotes (").
. The built-in 1en() function returns the length of the string, ie. the number of characters. This is the same

function you use to find the length of a list, tuple, set, or dictionary. A string is like a tuple of characters.

. Just like getting individual items out of a list, you can get individual characters out of a string using index
notation.

. Just like lists, you can concatenate strings using the + operator.

4.4. FORMATTING STRINGS

Let’s take another look at humansize.py:

Strings can

be defined

112

with either

single or

double

quotes.

113

SUFFIXES = {1066: ['KB', 'MB', 'GB', 'TB', 'PB', 'EB', 'ZB', 'YB'], @
1024: ['KiB', 'MiB', 'GiB', 'TiB', 'PiB', 'EiB', 'ZiB', 'YiB'l}

def approximate_size(size, a_kilobyte is 1024 bytes=True):

"'"'"Convert a file size to human-readable form. @

Keyword arguments:

size -- file size in bytes

a_kilobyte is 1024 bytes -- if True (default), use multiples of 1024
if False, use multiples of 1000

Returns: string

©)
if size < 0:

raise ValueError ('number must be non-negative') @
multiple = 1024 if a_kilobyte_ is_ 1024 bytes else 1000
for suffix in SUFFIXES[multiple]:

size /= multiple

if size < multiple:

return '{0:.1f} {1}'.format(size, suffix) ®

raise ValueError ('number too large')

'KB', 'MB', 'GB'... those are each strings.

Function docstrings are strings. This docstring spans multiple lines, so it uses three-in-a-row quotes to start
and end the string.

These three-in-a-row quotes end the docstring.

There’s another string, being passed to the exception as a human-readable error message.

There’s a... whoa, what the heck is that?

Python 3 supports formatting values into strings. Although this can include very complicated expressions, the

most basic usage is to insert a value into a string with a single placeholder.

114

>>> username = 'mark’
>>> password = 'PapayaWhip')
>>> "{@}'s password is {1}".format(username, password) @

"mark's password is PapayaWhip"

I. No, my password is not really PapayaWhip.
2. There’s a lot going on here. First, that’s a method call on a string literal. Strings are objects, and objects have
methods. Second, the whole expression evaluates to a string. Third, {0} and {1} are replacement fields, which

are replaced by the arguments passed to the format () method.

4.4.1. COMPOUND FIELD NAMES

The previous example shows the simplest case, where the replacement fields are simply integers. Integer
replacement fields are treated as positional indices into the argument list of the format () method. That
means that {0} is replaced by the first argument (username in this case), {1} is replaced by the second
argument (password), &c. You can have as many positional indices as you have arguments, and you can have

as many arguments as you want. But replacement fields are much more powerful than that.

>>> import humansize

>>> si _suffixes = humansize.SUFFIXES[1000] @
>>> si_suffixes

['kKB', 'MB', 'GB', 'TB', 'PB', 'EB', 'ZB', 'YB']
>>> '1000{0[0]} = 1{0[1]}'.format(si_suffixes) @
"1000KB = 1MB'

I. Rather than calling any function in the humansize module, you're just grabbing one of the data structures it
defines: the list of “SI” (powers-of-1000) suffixes.

2. This looks complicated, but it’s not. {0} would refer to the first argument passed to the format () method,
si_suffixes. But si_suffixes is a list. So {0[0]} refers to the first item of the list which is the first
argument passed to the format () method: 'KB'. Meanwhile, {6[1]} refers to the second item of the same
list: 'MB'. Everything outside the curly braces — including 1000, the equals sign, and the spaces — is

untouched. The final result is the string '1000KB = 1MB'.

15

What this example shows is that format specifiers can
access items and properties of data structures using (almost)
Python syntax. This is called compound field names. The

following compound field names “just work’:

Passing a list, and accessing an item of the list by index {0} S

(as in the previous example)

replaced by

st
the 1
functions by name

Passing a class instance, and accessing its properties and format()

methods by name

Passing a dictionary, and accessing a value of the
dictionary by key

Passing a module, and accessing its variables and

argument.

Any combination of the above

Just to blow your mind, here’s an example that {1} 1S

combines all of the above:

replaced by

the 2"¢.

>>> import humansize

>>> import sys

>>> '"1IMB = 1000{0.modules[humansize] .SUFFIXES[1000][0]}"'.format(sys)
"1IMB = 1000KB'

Here’s how it works:

The sys module holds information about the currently running Python instance. Since you just imported it,
you can pass the sys module itself as an argument to the format () method. So the replacement field {0}
refers to the sys module.

sys.modules is a dictionary of all the modules that have been imported in this Python instance. The keys

are the module names as strings; the values are the module objects themselves. So the replacement field

{0.modules} refers to the dictionary of imported modules.

116

* sys.modules['humansize'] is the humansize module which you just imported. The replacement field
{0.modules[humansize]} refers to the humansize module. Note the slight difference in syntax here. In real
Python code, the keys of the sys.modules dictionary are strings; to refer to them, you need to put quotes
around the module name (e.g. 'humansize'). But within a replacement field, you skip the quotes around the

dictionary key name (e.g. humansize). To quote PEP 3101: Advanced String Formatting, “The rules for

parsing an item key are very simple. If it starts with a digit, then it is treated as a number, otherwise it is
used as a string.”

* sys.modules['humansize'].SUFFIXES is the dictionary defined at the top of the humansize module. The
replacement field {0.modules[humansize].SUFFIXES} refers to that dictionary.

* sys.modules['humansize'].SUFFIXES[1000] is a list of SI suffixes: ['KB', 'MB', 'GB', 'TB', 'PB',
'"EB', 'ZB', 'YB']. So the replacement field {@.modules[humansize].SUFFIXES[1000]} refers to that list.

* sys.modules['humansize'].SUFFIXES[1000] [0] is the first item of the list of SI suffixes: 'KB'. Therefore,
the complete replacement field {®.modules[humansize] .SUFFIXES[1000] [0]} is replaced by the two-

character string KB.

4.4.2. FORMAT SPECIFIERS

But wait! There’s more! Let’s take another look at that strange line of code from humansize.py:

if size < multiple:

return '{0:.1f} {1}'.format(size, suffix)

{1} is replaced with the second argument passed to the format () method, which is suffix. But what is
{0:.1f}? It’s two things: {0}, which you recognize, and :.1f, which you don’t. The second half (including
and after the colon) defines the format specifier, which further refines how the replaced variable should be

formatted.

I35~ Format specifiers allow you to munge the replacement text in a variety of useful
ways, like the printf() function in C. You can add zero- or space-padding, align

strings, control decimal precision, and even convert numbers to hexadecimal.

117

http://www.python.org/dev/peps/pep-3101/

Within a replacement field, a colon (:) marks the start of the format specifier. The format specifier “.1”
means “round to the nearest tenth” (i.e. display only one digit after the decimal point). The format specifier
“f” means “fixed-point number” (as opposed to exponential notation or some other decimal representation).
Thus, given a size of 698.24 and suffix of 'GB', the formatted string would be '698.2 GB', because

698.24 gets rounded to one decimal place, then the suffix is appended after the number.

>>> '"{0:.1f} {1}'.format(698.24, 'GB')
'698.2 GB'

For all the gory details on format specifiers, consult the Format Specification Mini-Language in the official

Python documentation.

4.5. OTHER COMMON STRING METHODS

Besides formatting, strings can do a number of other useful tricks.

118

http://docs.python.org/3.1/library/string.html#format-specification-mini-language

>>> s = ''"'Finished files are the re- @
sult of years of scientif-
ic study combined with the
experience of years.'"''
>>> s.splitlines() @
['Finished files are the re-',
'sult of years of scientif-',
"ic study combined with the',
"experience of years.']
>>> print(s.lower()) ©
finished files are the re-
sult of years of scientif-
ic study combined with the
experience of years.
>>> s.lower().count('f") @

6

. You can input multiline strings in the Python interactive shell. Once you start a multiline string with triple
quotation marks, just hit ENTER and the interactive shell will prompt you to continue the string. Typing the
closing triple quotation marks ends the string, and the next ENTER will execute the command (in this case,
assigning the string to s).

The splitlines() method takes one multiline string and returns a list of strings, one for each line of the
original. Note that the carriage returns at the end of each line are not included.

The lower () method converts the entire string to lowercase. (Similarly, the upper () method converts a
string to uppercase.)

The count () method counts the number of occurrences of a substring. Yes, there really are six “f’s in that

sentence!
Here’s another common case. Let’s say you have a list of key-value pairs in the form

keyl=valuel&key2=value2, and you want to split them up and make a dictionary of the form {key1l:

valuel, key2: value2}.

119

>>> query = 'user=pilgrim&database=master&password=PapayaWhip’

>>> a 1list = query.split('&"))
>>> a_list

['user=pilgrim', 'database=master', 'password=PapayaWhip']

>>> a 1ist_of_lists = [v.split('=', 1) for v in a_list if '=' in v] @
>>> a_list_of_lists

[['user', 'pilgrim'], ['database', 'master'], ['password',6 'PapayaWhip']]
>>> a dict = dict(a_list_of lists) ©
>>> a dict

{'password': 'PapayaWhip', 'user': 'pilgrim', 'database': 'master'}

The split() string method has one required argument, a delimiter. The method splits a string into a list of
strings based on the delimiter. Here, the delimiter is an ampersand character, but it could be anything.
Now we have a list of strings, each with a key, followed by an equals sign, followed by a value. We can use

a list comprehension to iterate over the entire list and split each string into two strings based on the first

equals sign. The optional second argument to the split() method is the number of times you want to split.
1 means “only split once,” so the split() method will return a two-item list. (In theory, a value could
contain an equals sign too. If you just used 'key=value=foo'.split('='), you would end up with a three-
item list ['key', 'value', 'foo'l.)

Finally, Python can turn that list-of-lists into a dictionary simply by passing it to the dict() function.

[33" The previous example looks a lot like parsing query parameters in a URL, but real-life
URL parsing is actually more complicated than this. If you’re dealing with URL query

parameters, you're better off using the urllib.parse.parse_gs() function, which

handles some non-obvious edge cases.

4.5.1. SLICING A STRING

Once you’ve defined a string, you can get any part of it as a new string. This is called slicing the string. Slicing

characters.

120

http://docs.python.org/3.1/library/urllib.parse.html#urllib.parse.parse_qs

>>> a string = 'My alphabet starts where your alphabet ends.'

>>> a string[3:11] @
"alphabet’
>>> a_string[3:-3] @

"alphabet starts where your alphabet en'

>>> a string[0:2] ®
|My|
>>> a_string[:18] @

"My alphabet starts'
>>> 3 string[18:] ®

where your alphabet ends.'

. You can get a part of a string, called a “slice”, by specifying two indices. The return value is a new string
containing all the characters of the string, in order, starting with the first slice index.

Like slicing lists, you can use negative indices to slice strings.

. Strings are zero-based, so a_string[0:2] returns the first two items of the string, starting at a_string[0],
up to but not including a_string[2].

If the left slice index is O, you can leave it out, and 0 is implied. So a_string[:18] is the same as
a_string[0:18], because the starting 0 is implied.

Similarly, if the right slice index is the length of the string, you can leave it out. So a_string[18:] is the
same as a_string[18:44], because this string has 44 characters. There is a pleasing symmetry here. In this
44-character string, a_string[:18] returns the first 18 characters, and a_string[18:] returns everything
but the first 18 characters. In fact, a_string[:n] will always return the first n characters, and a_string[n:]

will return the rest, regardless of the length of the string.

4.6. STRINGS VS. BYTES

Bytes are bytes; characters are an abstraction. An immutable sequence of Unicode characters is called a

string. An immutable sequence of numbers-between-0-and-255 is called a bytes object.

121

>>> by = b'abcd\x65' @
>>> by

b'abcde'’

>>> type(by) @

<class 'bytes'>

>>> len(by) ©)
5

>>> py += pb'\xff' @
>>> by

b'abcde\xff'

>>> len(by) ®
6
>>> by [0] ®
97
>>> by[0] = 102 @

Traceback (most recent call last):
File "<stdin>", 1line 1, in <module>

TypeError: 'bytes' object does not support item assignment

. To define a bytes object, use the b'' “byte literal” syntax. Each byte within the byte literal can be an ASCII
character or an encoded hexadecimal number from \x00 to \xff (0-255).

. The type of a bytes object is bytes.

. Just like lists and strings, you can get the length of a bytes object with the built-in 1en() function.

. Just like lists and strings, you can use the + operator to concatenate bytes objects. The result is a new
bytes object.

Concatenating a 5-byte bytes object and a |-byte bytes object gives you a 6-byte bytes object.

. Just like lists and strings, you can use index notation to get individual bytes in a bytes object. The items of a
string are strings; the items of a bytes object are integers. Specifically, integers between 0-255.

. A bytes object is immutable; you can not assign individual bytes. If you need to change individual bytes, you

convert the bytes object into a bytearray object.

122

>>> by = b'abcd\x65'
>>> parr = bytearray(by) @
>>> barr

bytearray(b'abcde')

>>> len(barr) @
5

>>> barr[0] = 102 ®
>>> barr

bytearray(b'fbcde')

I. To convert a bytes object into a mutable bytearray object, use the built-in bytearray() function.
2. All the methods and operations you can do on a bytes object, you can do on a bytearray object too.
3. The one difference is that, with the bytearray object, you can assign individual bytes using index notation.

The assigned value must be an integer between 0-255.

The one thing you can never do is mix bytes and strings.

>>> py = b'd’
>>> s = 'abcde'
>>> py + s)
Traceback (most recent call last):
File "<stdin>", 1line 1, in <module>
TypeError: can't concat bytes to str
>>> s.count (by) @
Traceback (most recent call last):
File "<stdin>", 1line 1, in <module>
TypeError: Can't convert 'bytes' object to str implicitly
>>> s.count(by.decode('ascii')) ®

1

I. You can’t concatenate bytes and strings. They are two different data types.
2. You can’t count the occurrences of bytes in a string, because there are no bytes in a string. A string is a

sequence of characters. Perhaps you meant “count the occurrences of the string that you would get after

123

decoding this sequence of bytes in a particular character encoding”? Well then, you’ll need to say that
explicitly. Python 3 won’t implicitly convert bytes to strings or strings to bytes.
By an amazing coincidence, this line of code says “count the occurrences of the string that you would get

after decoding this sequence of bytes in this particular character encoding.”

And here is the link between strings and bytes: bytes objects have a decode () method that takes a
character encoding and returns a string, and strings have an encode () method that takes a character
encoding and returns a bytes object. In the previous example, the decoding was relatively

straightforward — converting a sequence of bytes in the ASCII encoding into a string of characters. But the
same process works with any encoding that supports the characters of the string — even legacy (non-

Unicode) encodings.

124

>>> a_string = "JRA Python')
>>> len(a_string)

9

>>> by = a_string.encode('utf-8"') @
>>> by

b'\xe6\xb7\xbl\xe5\x85\xa5 Python'

>>> len(by)

13

>>> by = a_string.encode('gb18030') ®
>>> by

b'\xc9\xee\xc8\xeb Python'

>>> len(by)

11

>>> by = a_string.encode('big5") @
>>> by

b'\xb2 \xa4J Python'

>>> len(by)

11

>>> roundtrip = by.decode('big5"') ®
>>> roundtrip

"YRA Python'

>>> a string == roundtrip

True

. This is a string. It has nine characters.

. This is a bytes object. It has |3 bytes. It is the sequence of bytes you get when you take a_string and
encode it in UTF-8.

. This is a bytes object. It has || bytes. It is the sequence of bytes you get when you take a_string and
encode it in GBI8030.

. This is a bytes object. It has || bytes. It is an entirely different sequence of bytes that you get when you take
a_string and encode it in Bigb.

. This is a string. It has nine characters. It is the sequence of characters you get when you take by and decode

it using the Bigh encoding algorithm. It is identical to the original string.

125

http://en.wikipedia.org/wiki/GB_18030
http://en.wikipedia.org/wiki/Big5

4.7. POSTSCRIPT: CHARACTER ENCODING OF PYTHON SOURCE CODE

Python 3 assumes that your source code — i.e. each .py file —is encoded in UTF-8.

encoding is UTF-8.

If you would like to use a different encoding within your Python code, you can put an encoding declaration

on the first line of each file. This declaration defines a .py file to be windows-1252:

-*- coding: windows-1252 -*-

Technically, the character encoding override can also be on the second line, if the first line is a UNIX-like

hash-bang command.

#!/usr/bin/python3

-*- coding: windows-1252 -*-

For more information, consult PEP 263: Defining Python Source Code Encodings.

4.8. FURTHER READING

On Unicode in Python:

* Python Unicode HOWTO

126

http://www.python.org/dev/peps/pep-3120/
http://www.python.org/dev/peps/pep-3120/
http://www.python.org/dev/peps/pep-0263/
http://docs.python.org/3.1/howto/unicode.html

What’s New In Python 3: Text vs. Data Instead Of Unicode vs. 8-bit

whose ordinal value is greater than 65535)

On Unicode in general:

The Absolute Minimum Every Software Developer Absolutely, Positively Must Know About Unicode and

Character Sets (No Excuses!)

On the Goodness of Unicode

On Character Strings

Characters vs. Bytes

On character encoding in other formats:

Character encoding in XML

Character encoding in HTML

On strings and string formatting:

string — Common string operations

Format String Syntax

Format Specification Mini-Language

PEP 3101: Advanced String Formatting

127

http://docs.python.org/3.0/whatsnew/3.0.html#text-vs-data-instead-of-unicode-vs-8-bit
http://www.python.org/dev/peps/pep-0261/
http://www.joelonsoftware.com/articles/Unicode.html
http://www.joelonsoftware.com/articles/Unicode.html
http://www.tbray.org/ongoing/When/200x/2003/04/06/Unicode
http://www.tbray.org/ongoing/When/200x/2003/04/13/Strings
http://www.tbray.org/ongoing/When/200x/2003/04/26/UTF
http://feedparser.org/docs/character-encoding.html
http://blog.whatwg.org/the-road-to-html-5-character-encoding
http://docs.python.org/3.1/library/string.html
http://docs.python.org/3.1/library/string.html#formatstrings
http://docs.python.org/3.1/library/string.html#format-specification-mini-language
http://www.python.org/dev/peps/pep-3101/

CHAPTER 5. REGULAR EXPRESSIONS

% Some people, when confronted with a problem, think “I know, I'll use regular expressions.” Now they have two

problems. %

5.1. DIVING IN

etting a small bit of text out of a large block of text is a challenge. In Python, strings have methods
for searching and replacing: index (), find(), split(), count(), replace(), &c. But these methods are
limited to the simplest of cases. For example, the index () method looks for a single, hard-coded substring,
and the search is always case-sensitive. To do case-insensitive searches of a string s, you must call
s.lower () or s.upper () and make sure your search strings are the appropriate case to match. The

replace() and split() methods have the same limitations.

If your goal can be accomplished with string methods, you should use them. They’re fast and simple and easy
to read, and there’s a lot to be said for fast, simple, readable code. But if you find yourself using a lot of
different string functions with if statements to handle special cases, or if you're chaining calls to split()

and join() to slice-and-dice your strings, you may need to move up to regular expressions.

Regular expressions are a powerful and (mostly) standardized way of searching, replacing, and parsing text
with complex patterns of characters. Although the regular expression syntax is tight and unlike normal code,
the result can end up being more readable than a hand-rolled solution that uses a long chain of string
functions. There are even ways of embedding comments within regular expressions, so you can include fine-

grained documentation within them.

I3 If you've used regular expressions in other languages (like Perl, JavaScript, or PHP),

overview of the available functions and their arguments.

128

http://www.jwz.org/hacks/marginal.html
http://docs.python.org/dev/library/re.html#module-contents

5.2. CASE STUDY: STREET ADDRESSES

This series of examples was inspired by a real-life problem | had in my day job several years ago, when |
needed to scrub and standardize street addresses exported from a legacy system before importing them into
a newer system. (See, | don’t just make this stuff up; it’s actually useful.) This example shows how |

approached the problem.

>>> s = '100 NORTH MAIN ROAD'

>>> s.replace('ROAD', 'RD.") ®
"100 NORTH MAIN RD.'

>>> s = '100 NORTH BROAD ROAD'

>>> s.replace('ROAD', 'RD.') @
'100 NORTH BRD. RD.'

>>> s[:-4] + s[-4:].replace('ROAD', 'RD.') ®

'100 NORTH BROAD RD.'

®

>>> import re
>>> re.sub('ROAD$', 'RD.', s) ®

"100 NORTH BROAD RD.'

My goal is to standardize a street address so that 'ROAD' is always abbreviated as 'RD.'. At first glance, |
thought this was simple enough that | could just use the string method replace(). After all, all the data was
already uppercase, so case mismatches would not be a problem. And the search string, 'ROAD', was a
constant. And in this deceptively simple example, s.replace() does indeed work.

Life, unfortunately, is full of counterexamples, and | quickly discovered this one. The problem here is that
'"ROAD' appears twice in the address, once as part of the street name 'BROAD' and once as its own word.
The replace() method sees these two occurrences and blindly replaces both of them; meanwhile, | see my
addresses getting destroyed.

. To solve the problem of addresses with more than one 'ROAD' substring, you could resort to something like
this: only search and replace 'ROAD' in the last four characters of the address (s[-4:]), and leave the string
alone (s[:-41). But you can see that this is already getting unwieldy. For example, the pattern is dependent

on the length of the string you're replacing. (If you were replacing ' STREET' with 'ST.', you would need to

129

use s[:-6] and s[-6:].replace(...).) Would you like to come back in six months and debug this? | know
| wouldn’t.

It's time to move up to regular expressions. In Python, all functionality related to regular expressions is
contained in the re module.

. Take a look at the first parameter: 'ROAD$'. This is a simple regular expression that matches 'ROAD' only
when it occurs at the end of a string. The $ means “end of the string.” (There is a corresponding character,
the caret #, which means “beginning of the string.”) Using the re.sub() function, you search the string s for
the regular expression 'ROAD$' and replace it with 'RD.'. This matches the ROAD at the end of the string s,

but does not match the ROAD that’s part of the word BROAD, because that’s in the middle of s.

Continuing with my story of scrubbing addresses, | soon
discovered that the previous example, matching 'ROAD'
at the end of the address, was not good enough,
because not all addresses included a street designation

at all. Some addresses simply ended with the street

N matches

the start of

name. | got away with it most of the time, but if the
street name was 'BROAD', then the regular expression
would match 'ROAD' at the end of the string as part of
the word 'BROAD', which is not what | wanted.

a string. $

>>> s = '100 BROAD'

matches the

>>> re.sub('ROAD$', 'RD.', s)
"100 BRD.'

>>> re.sub('\\bROAD$', 'RD.', s) @ end Ofa
'100 BROAD' ¥

>>> re.sub(r'\bROAD$', 'RD.', s) @ Strlng.
'100 BROAD'

>>> s = '100 BROAD ROAD APT. 3'

>>> re.sub(r'\bROAD$', 'RD.', s) ©)
'100 BROAD ROAD APT. 3'

>>> re.sub(r'\bROAD\b', 'RD.', s) @
"100 BROAD RD. APT 3'

130

What | really wanted was to match 'ROAD' when it was at the end of the string and it was its own word
(and not a part of some larger word). To express this in a regular expression, you use \b, which means “a
word boundary must occur right here.” In Python, this is complicated by the fact that the '\' character in a
string must itself be escaped. This is sometimes referred to as the backslash plague, and it is one reason why
regular expressions are easier in Perl than in Python. On the down side, Perl mixes regular expressions with
other syntax, so if you have a bug, it may be hard to tell whether it’s a bug in syntax or a bug in your
regular expression.

To work around the backslash plague, you can use what is called a raw string, by prefixing the string with the
letter r. This tells Python that nothing in this string should be escaped; '\t' is a tab character, but r'\t' is
really the backslash character \ followed by the letter t. | recommend always using raw strings when dealing
with regular expressions; otherwise, things get too confusing too quickly (and regular expressions are
confusing enough already).

*sigh™ Unfortunately, | soon found more cases that contradicted my logic. In this case, the street address
contained the word 'ROAD' as a whole word by itself, but it wasn’t at the end, because the address had an
apartment number after the street designation. Because 'ROAD' isn’t at the very end of the string, it doesn’t
match, so the entire call to re.sub() ends up replacing nothing at all, and you get the original string back,
which is not what you want.

To solve this problem, | removed the $ character and added another \b. Now the regular expression reads
“match 'ROAD' when it’s a whole word by itself anywhere in the string,” whether at the end, the beginning,

or somewhere in the middle.

5.3. CASE STUDY: ROMAN NUMERALS

You've most likely seen Roman numerals, even if you didn’t recognize them. You may have seen them in
copyrights of old movies and television shows (“Copyright MCMXLVI” instead of “Copyright 1946”), or on the
dedication walls of libraries or universities (“established MDCCCLXXXVIII” instead of “established 1888”). You
may also have seen them in outlines and bibliographical references. It’s a system of representing numbers

that really does date back to the ancient Roman empire (hence the name).

131

In Roman numerals, there are seven characters that are repeated and combined in various ways to represent

numbers.
I =1
V=25
X =10
L = 50
C = 100
D = 500
M = 1000

The following are some general rules for constructing Roman numerals:

Sometimes characters are additive. I is 1, II is 2, and III is 3. VI is 6 (literally, “5 and 1”), VII is 7, and
VIII is 8.

The tens characters (I, X, C, and M) can be repeated up to three times. At 4, you need to subtract from the
next highest fives character. You can't represent 4 as I11I; instead, it is represented as IV (“1 less than 5”).
40 is written as XL (“10 less than 50”), 41 as XLI, 42 as XLII, 43 as XLIII, and then 44 as XLIV (“10 less
than 50, then 1 less than 57).

Sometimes characters are... the opposite of additive. By putting certain characters before others, you
subtract from the final value. For example, at 9, you need to subtract from the next highest tens character: 8
is VIII, but 9 is IX (“1 less than 10”), not VIIII (since the I character can not be repeated four times). 90
is XC, 900 is CM.

The fives characters can not be repeated. 10 is always represented as X, never as VV. 100 is always C, never
LL.

Roman numerals are read left to right, so the order of characters matters very much. DC is 600; CD is a
completely different number (400, “100 less than 500”). CI is 101; IC is not even a valid Roman numeral
(because you can't subtract 1 directly from 100; you would need to write it as XCIX, “10 less than 100, then

1 less than 107).

132

4.

5.3.1. CHECKING FOR THOUSANDS

What would it take to validate that an arbitrary string is a valid Roman numeral? Let’s take it one digit at a
time. Since Roman numerals are always written highest to lowest, let’s start with the highest: the thousands

place. For numbers 1000 and higher, the thousands are represented by a series of M characters.

>>> import re

>>> pattern = '"M?M?M?$’ @
>>> re.search(pattern, 'M") @
< _sre.SRE_Match object at 0106FB58>
>>> re.search(pattern, 'MM'") ®
< _sre.SRE_Match object at 0106C290>
>>> re.search(pattern, 'MMM'") @
< _sre.SRE_Match object at 0106AA38>
>>> re.search(pattern, 'MMMM') ®
>>> re.search(pattern, '') ®

<_sre.SRE_Match object at 0106F4A8>

This pattern has three parts. * matches what follows only at the beginning of the string. If this were not
specified, the pattern would match no matter where the M characters were, which is not what you want.
You want to make sure that the M characters, if they’re there, are at the beginning of the string. M?
optionally matches a single M character. Since this is repeated three times, you’re matching anywhere from
zero to three M characters in a row. And $ matches the end of the string. When combined with the
character at the beginning, this means that the pattern must match the entire string, with no other
characters before or after the M characters.

The essence of the re module is the search() function, that takes a regular expression (pattern) and a
string ('M') to try to match against the regular expression. If a match is found, search() returns an object
which has various methods to describe the match; if no match is found, search() returns None, the Python
null value. All you care about at the moment is whether the pattern matches, which you can tell by just
looking at the return value of search(). 'M' matches this regular expression, because the first optional M
matches and the second and third optional M characters are ignored.

'"MM' matches because the first and second optional M characters match and the third M is ignored.

"MMM' matches because all three M characters match.

133

'"MMMM' does not match. All three M characters match, but then the regular expression insists on the string
ending (because of the $ character), and the string doesn’t end yet (because of the fourth M). So search()
returns None.

Interestingly, an empty string also matches this regular expression, since all the M characters are optional.

5.3.2. CHECKING FOR HUNDREDS

The hundreds place is more difficult than the thousands,

because there are several mutually exclusive ways it

could be expressed, depending on its value.

100 = C

o o ? makes a
300 = CCC

406 = pattern

500 = D .

o optional.
700 = DCC

800 = DCCC

900 = CM

So there are four possible patterns:

CM

CcD

Zero to three C characters (zero if the hundreds place is 0)
D, followed by zero to three C characters

The last two patterns can be combined:

an optional D, followed by zero to three C characters

This example shows how to validate the hundreds place of a Roman numeral.

134

>>> import re

>>> pattern = '~M?M?M? (CM|CD|D?C?C?C?)$' @
>>> re.search(pattern, 'MCM') @
<_sre.SRE_Match object at 01070390>
>>> re.search(pattern, 'MD'") ©)
<_sre.SRE_Match object at 01073A50>
>>> re.search(pattern, 'MMMCCC') @
<_sre.SRE_Match object at 010748A8>
>>> re.search(pattern, 'MCMC') ®
>>> re.search(pattern, '') ®

<_sre.SRE_Match object at 01071D98>

This pattern starts out the same as the previous one, checking for the beginning of the string (), then the
thousands place (M?M?M?). Then it has the new part, in parentheses, which defines a set of three mutually
exclusive patterns, separated by vertical bars: CM, CD, and D?C?C?C? (which is an optional D followed by zero
to three optional C characters). The regular expression parser checks for each of these patterns in order
(from left to right), takes the first one that matches, and ignores the rest.

'"MCM' matches because the first M matches, the second and third M characters are ignored, and the CM
matches (so the CD and D?C?C?C? patterns are never even considered). MCM is the Roman numeral
representation of 1900.

'"MD' matches because the first M matches, the second and third M characters are ignored, and the D?C?C?C?
pattern matches D (each of the three C characters are optional and are ignored). MD is the Roman numeral
representation of 1500.

'"MMMCCC' matches because all three M characters match, and the D?C?C?C? pattern matches CCC (the D is
optional and is ignored). MMMCCC is the Roman numeral representation of 3300.

'"MCMC"' does not match. The first M matches, the second and third M characters are ignored, and the CM
matches, but then the $ does not match because you’re not at the end of the string yet (you still have an
unmatched C character). The C does not match as part of the D?C?C?C? pattern, because the mutually
exclusive CM pattern has already matched.

Interestingly, an empty string still matches this pattern, because all the M characters are optional and ignored,

and the empty string matches the D?C?C?C? pattern where all the characters are optional and ignored.

135

Whew! See how quickly regular expressions can get nasty? And you've only covered the thousands and
hundreds places of Roman numerals. But if you followed all that, the tens and ones places are easy, because

they’re exactly the same pattern. But let’s look at another way to express the pattern.

5.4. USING THE {n,m} SYNTAX

In the previous section, you were dealing with a pattern
where the same character could be repeated up to
three times. There is another way to express this in
regular expressions, which some people find more
readable. First look at the method we already used in
the previous example. {1)4}
s tmort e matches
>>> pattern = '~M?M?M?$'
>>> re.search(pattern, 'M')) between 1
<_sre.SRE_Match object at Ox0O8EE090>
>>> pattern = '"M?M?M?$' and 4
>>> re.search(pattern, 'MM') @
occurrences

<_sre.SRE_Match object at OxOO8EEB48>

>>> pattern = '"M?M?M?$'

of a pattern.

>>> re.search(pattern, 'MMM') (©)
<_sre.SRE_Match object at OxOO8EEQ90>

>>> re.search(pattern, 'MMMM') @

>>>

. This matches the start of the string, and then the first optional M, but not the second and third M (but that’s
okay because they’re optional), and then the end of the string.
. This matches the start of the string, and then the first and second optional M, but not the third M (but that’s

okay because it’s optional), and then the end of the string.

136

3. This matches the start of the string, and then all three optional M, and then the end of the string.
4. This matches the start of the string, and then all three optional M, but then does not match the end of the

string (because there is still one unmatched M), so the pattern does not match and returns None.

>>> pattern = '“M{0,3}$" @
>>> re.search(pattern, 'M") @
<_sre.SRE_Match object at OxOO8EEB48>
>>> re.search(pattern, 'MM') ©)
<_sre.SRE_Match object at OxOQO8EE090>
>>> re.search(pattern, 'MMM') @
<_sre.SRE_Match object at OxOO8EEDA8>

>>> re.search(pattern, 'MMMM') ®

>>>

|. This pattern says: “Match the start of the string, then anywhere from zero to three M characters, then the
end of the string.” The 0 and 3 can be any numbers; if you want to match at least one but no more than
three M characters, you could say M{1,3}.

This matches the start of the string, then one M out of a possible three, then the end of the string.

This matches the start of the string, then two M out of a possible three, then the end of the string.

This matches the start of the string, then three M out of a possible three, then the end of the string.

v > WD

This matches the start of the string, then three M out of a possible three, but then does not match the end of
the string. The regular expression allows for up to only three M characters before the end of the string, but

you have four, so the pattern does not match and returns None.

5.4.1. CHECKING FOR TENS AND ONES

Now let’s expand the Roman numeral regular expression to cover the tens and ones place. This example

shows the check for tens.

137

>>> pattern = ""M?M?M? (CM|CD|D?C?C?C?) (XC|XL|L?2X?X?X?)$"'
>>> re.search(pattern, 'MCMXL'))
<_sre.SRE_Match object at OxOO8EEB48>
>>> re.search(pattern, 'MCML') @
<_sre.SRE_Match object at OxOO8EEB48>
>>> re.search(pattern, 'MCMLX') ©)
<_sre.SRE_Match object at OxOO8EEB48>
>>> re.search(pattern, 'MCMLXXX") @
<_sre.SRE_Match object at OxOO8EEB48>

>>> re.search(pattern, 'MCMLXXXX') ®

>>>

. This matches the start of the string, then the first optional M, then CM, then XL, then the end of the string.
Remember, the (A|B|C) syntax means “match exactly one of A, B, or C”. You match XL, so you ignore the
XC and L?X?X?X? choices, and then move on to the end of the string. MCMXL is the Roman numeral
representation of 19460.

. This matches the start of the string, then the first optional M, then CM, then L?X?X?X?. Of the L?X?X?X2?, it
matches the L and skips all three optional X characters. Then you move to the end of the string. MCML is the
Roman numeral representation of 19560.

. This matches the start of the string, then the first optional M, then CM, then the optional L and the first
optional X, skips the second and third optional X, then the end of the string. MCMLX is the Roman numeral
representation of 1966.

. This matches the start of the string, then the first optional M, then CM, then the optional L and all three
optional X characters, then the end of the string. MCMLXXX is the Roman numeral representation of 1980.

. This matches the start of the string, then the first optional M, then CM, then the optional L and all three
optional X characters, then fails to match the end of the string because there is still one more X unaccounted

for. So the entire pattern fails to match, and returns None. MCMLXXXX is not a valid Roman numeral.

138

The expression for the ones place follows the same
pattern. I'll spare you the details and show you the end

result.

(A|B)
matches

either

pattern A or

pattern B,
but not
both.

>>> pattern = '"AM?M?M? (CM|CD|D?C?C?C?) (XC|XL|L?X?X?X?) (IX|IV|V?I?I?I?)$"

So what does that look like using this alternate {n,m} syntax! This example shows the new syntax.

>>> pattern = '""M{0,3}(CM|CD|D?C{0,3}) (XC|XL|L?X{0,3}) (IX|IV|V?I{0,3})$"
>>> re.search(pattern, 'MDLV'))

<_sre.SRE_Match object at OxOO8EEB48>

>>> re.search(pattern, 'MMDCLXVI') @

<_sre.SRE_Match object at OxOO8EEB48>

>>> re.search(pattern, '"MMMDCCCLXXXVIII') ©)

< _sre.SRE_Match object at OxOO8EEB48>

>>> re.search(pattern, 'I') @

< _sre.SRE_Match object at OxOO8EEB48>

139

. This matches the start of the string, then one of a possible three M characters, then D?C{0,3}. Of that, it
matches the optional D and zero of three possible C characters. Moving on, it matches L?X{0,3} by matching
the optional L and zero of three possible X characters. Then it matches V?1{0,3} by matching the optional v
and zero of three possible I characters, and finally the end of the string. MDLV is the Roman numeral
representation of 1555.

. This matches the start of the string, then two of a possible three M characters, then the D?C{0,3} with a D
and one of three possible C characters; then L?X{0,3} with an L and one of three possible X characters;
then V?I{0,3} with a V and one of three possible I characters; then the end of the string. MMDCLXVI is the
Roman numeral representation of 2666.

. This matches the start of the string, then three out of three M characters, then D?C{0,3} with a D and three
out of three C characters; then L?X{0,3} with an L and three out of three X characters; then V?1{0,3}

with a V and three out of three I characters; then the end of the string. MMMDCCCLXXXVIII is the Roman
numeral representation of 3888, and it’s the longest Roman numeral you can write without extended syntax.
. Watch closely. (I feel like a magician. “Watch closely, kids, I'm going to pull a rabbit out of my hat.”) This
matches the start of the string, then zero out of three M, then matches D?C{0,3} by skipping the optional D
and matching zero out of three C, then matches L?X{0,3} by skipping the optional L and matching zero out
of three X, then matches V?1{0,3} by skipping the optional V and matching one out of three I. Then the

end of the string. Whoa.

If you followed all that and understood it on the first try, you’re doing better than | did. Now imagine trying
to understand someone else’s regular expressions, in the middle of a critical function of a large program. Or
even imagine coming back to your own regular expressions a few months later. I've done it, and it’s not a

pretty sight.

Now let’s explore an alternate syntax that can help keep your expressions maintainable.

140

5.5. VERBOSE REGULAR EXPRESSIONS

So far you've just been dealing with what I'll call “compact” regular expressions. As you’'ve seen, they are
difficult to read, and even if you figure out what one does, that’s no guarantee that you’ll be able to

understand it six months later. What you really need is inline documentation.

Python allows you to do this with something called verbose regular expressions. A verbose regular expression

is different from a compact regular expression in two ways:

Whitespace is ignored. Spaces, tabs, and carriage returns are not matched as spaces, tabs, and carriage
returns. They’re not matched at all. (If you want to match a space in a verbose regular expression, you'll
need to escape it by putting a backslash in front of it.)

Comments are ignored. A comment in a verbose regular expression is just like a comment in Python code:
it starts with a # character and goes until the end of the line. In this case it's a comment within a multi-line

string instead of within your source code, but it works the same way.

This will be more clear with an example. Let’s revisit the compact regular expression you’ve been working

with, and make it a verbose regular expression. This example shows how.

141

>>> pattern = '"'

" # beginning of string
M{0,3} # thousands - 0 to 3 Ms
(CM|CD|D?C{0,3}) # hundreds - 900 (CM), 400 (CD), 0-300 (0 to 3 Cs),
or 500-800 (D, followed by 0 to 3 Cs)
(XC|XL|L?X{0,3}) # tens - 90 (XC), 40 (XL), 0-30 (0 to 3 Xs),
or 50-80 (L, followed by 0 to 3 Xs)
(IX|IV|V?I{0,3}) # ones - 9 (IX), 4 (IV), 0-3 (0 to 3 Is),
or 5-8 (V, followed by 0 to 3 Is)
$ # end of string
>>> re.search(pattern, 'M', re.VERBOSE))

<_sre.SRE_Match object at OxOO8EEB48>
>>> re.search(pattern, 'MCMLXXXIX', re.VERBOSE) @
<_sre.SRE_Match object at OxOO8EEB48>
>>> re.search(pattern, 'MMMDCCCLXXXVIII', re.VERBOSE) ©)
<_sre.SRE_Match object at OxOO8EEB48>

>>> re.search(pattern, 'M') @

The most important thing to remember when using verbose regular expressions is that you need to pass an
extra argument when working with them: re.VERBOSE is a constant defined in the re module that signals
that the pattern should be treated as a verbose regular expression. As you can see, this pattern has quite a
bit of whitespace (all of which is ignored), and several comments (all of which are ignored). Once you ignore
the whitespace and the comments, this is exactly the same regular expression as you saw in the previous
section, but it's a lot more readable.

This matches the start of the string, then one of a possible three M, then CM, then L and three of a possible
three X, then IX, then the end of the string.

This matches the start of the string, then three of a possible three M, then D and three of a possible three C,
then L and three of a possible three X, then V and three of a possible three I, then the end of the string.
This does not match. Why? Because it doesn’t have the re.VERBOSE flag, so the re.search function is
treating the pattern as a compact regular expression, with significant whitespace and literal hash marks.
Python can’t auto-detect whether a regular expression is verbose or not. Python assumes every regular

expression is compact unless you explicitly state that it is verbose.

142

5.6. CASE STUDY: PARSING PHONE NUMBERS

So far you've concentrated on matching whole patterns.
Either the pattern matches, or it doesn’t. But regular
expressions are much more powerful than that. When a
regular expression does match, you can pick out specific
pieces of it. You can find out what matched where.

\d matches

This example came from another real-world problem |

any numeric
digit (0—9).
\ D matches

encountered, again from a previous day job. The
problem: parsing an American phone number. The client
wanted to be able to enter the number free-form (in a
single field), but then wanted to store the area code,
trunk, number, and optionally an extension separately in

the company’s database. | scoured the Web and found

anything

many examples of regular expressions that purported to
do this, but none of them were permissive enough. o« o
but digits.
Here are the phone numbers | needed to be able to

accept:

800-555-1212

800 555 1212

800.555.1212

(800) 555-1212
1-800-555-1212
800-555-1212-1234
800-555-1212x1234
800-555-1212 ext. 1234

work 1-(800) 555.1212 #1234

143

Quite a variety! In each of these cases, | need to know that the area code was 800, the trunk was 555, and
the rest of the phone number was 1212. For those with an extension, | need to know that the extension

was 1234.

Let’s work through developing a solution for phone number parsing. This example shows the first step.

>>> phonePattern = re.compile(r'M(\d{3})-(\d{3})-(\d{4})$"))

>>> phonePattern.search('800-555-1212") .groups() @
('800', '555', '1212")

®)

>>> phonePattern.search('800-555-1212-1234")
>>> phonePattern.search('800-555-1212-1234") .groups() @
Traceback (most recent call last):

File "<stdin>", line 1, in <module>

AttributeError: 'NoneType' object has no attribute 'groups'

Always read regular expressions from left to right. This one matches the beginning of the string, and then
(\d{3}). What’s \d{3}? Well, \d means “any numeric digit” (0 through 9). The {3} means “match exactly

three numeric digits”; it’s a variation on the {n,m} syntax you saw earlier. Putting it all in parentheses

means “match exactly three numeric digits, and then remember them as a group that | can ask for later”. Then
match a literal hyphen. Then match another group of exactly three digits. Then another literal hyphen. Then
another group of exactly four digits. Then match the end of the string.

To get access to the groups that the regular expression parser remembered along the way, use the
groups () method on the object that the search() method returns. It will return a tuple of however many
groups were defined in the regular expression. In this case, you defined three groups, one with three digits,
one with three digits, and one with four digits.

This regular expression is not the final answer, because it doesn’t handle a phone number with an extension
on the end. For that, you'll need to expand the regular expression.

And this is why you should never “chain” the search() and groups() methods in production code. If the
None.groups() raises a perfectly obvious exception: None doesn’t have a groups () method. (Of course, it’s
slightly less obvious when you get this exception from deep within your code. Yes, | speak from experience

here.)

| 44

>>> phonePattern = re.compile(r'*(\d{3})-(\d{3})-(\d{4})-(\d+H)$"))
>>> phonePattern.search('800-555-1212-1234") .groups() @
('800', '555", '1212', '1234")

>>> phonePattern.search('800 555 1212 1234') ©)
>>>
>>> phonePattern.search('800-555-1212") @
>>>

. This regular expression is almost identical to the previous one. Just as before, you match the beginning of
the string, then a remembered group of three digits, then a hyphen, then a remembered group of three
digits, then a hyphen, then a remembered group of four digits. What’s new is that you then match another
hyphen, and a remembered group of one or more digits, then the end of the string.

. The groups () method now returns a tuple of four elements, since the regular expression now defines four
groups to remember.

Unfortunately, this regular expression is not the final answer either, because it assumes that the different
parts of the phone number are separated by hyphens. What if they’re separated by spaces, or commas, or
dots? You need a more general solution to match several different types of separators.

Oops! Not only does this regular expression not do everything you want, it’s actually a step backwards,
because now you can’t parse phone numbers without an extension. That’s not what you wanted at all; if the
extension is there, you want to know what it is, but if it’s not there, you still want to know what the

different parts of the main number are.

The next example shows the regular expression to handle separators between the different parts of the

phone number.

>>> phonePattern = re.compile(r'A(\d{3})\D+(\d{3})\D+(\d{4})\D+(\d+)$') @
>>> phonePattern.search('800 555 1212 1234').groups() @

('800', '555', '1212', '1234")

>>> phonePattern.search('800-555-1212-1234").groups() ®

('800', '555', '1212', '1234")

>>> phonePattern.search('80055512121234") @
>>>
>>> phonePattern.search('800-555-1212") ®
>>>

145

I. Hang on to your hat. You’re matching the beginning of the string, then a group of three digits, then \D+.
What the heck is that? Well, \D matches any character except a numeric digit, and + means “| or more”. So
\D+ matches one or more characters that are not digits. This is what you’re using instead of a literal hyphen,
to try to match different separators.

2. Using \D+ instead of - means you can now match phone numbers where the parts are separated by spaces
instead of hyphens.

3. Of course, phone numbers separated by hyphens still work too.

4. Unfortunately, this is still not the final answer, because it assumes that there is a separator at all. What if the
phone number is entered without any spaces or hyphens at all?

5. Oops! This still hasn’t fixed the problem of requiring extensions. Now you have two problems, but you can

solve both of them with the same technique.

The next example shows the regular expression for handling phone numbers without separators.

>>> phonePattern = re.compile(r'*(\d{3})\D*(\d{3})\D*(\d{4})\D*(\d*)$') @
>>> phonePattern.search('80055512121234") .groups () @

('800', '555', '1212', '1234")

>>> phonePattern.search('800.555.1212 x1234').groups() ®

('800', '555', '1212', '1234")

>>> phonePattern.search('800-555-1212") .groups() @
('800', '555', '1212', '")

>>> phonePattern.search('(800)5551212 x1234") ®
>>>

I. The only change you’ve made since that last step is changing all the + to *. Instead of \D+ between the parts
of the phone number, you now match on \D*. Remember that + means “| or more”? Well, * means “zero
or more”. So now you should be able to parse phone numbers even when there is no separator character
at all.

2. Lo and behold, it actually works. Why? You matched the beginning of the string, then a remembered group
of three digits (800), then zero non-numeric characters, then a remembered group of three digits (555), then
zero non-numeric characters, then a remembered group of four digits (1212), then zero non-numeric
characters, then a remembered group of an arbitrary number of digits (1234), then the end of the string.

3. Other variations work now too: dots instead of hyphens, and both a space and an x before the extension.

146

4. Finally, you've solved the other long-standing problem: extensions are optional again. If no extension is found,
the groups () method still returns a tuple of four elements, but the fourth element is just an empty string.

5. | hate to be the bearer of bad news, but you're not finished yet. What’s the problem here? There’s an extra
character before the area code, but the regular expression assumes that the area code is the first thing at
the beginning of the string. No problem, you can use the same technique of “zero or more non-numeric

characters” to skip over the leading characters before the area code.
The next example shows how to handle leading characters in phone numbers.
>>> phonePattern = re.compile(r'"\D*(\d{3})\D*(\d{3})\D*(\d{4})\D*(\d*)$') @

>>> phonePattern.search('(800)5551212 ext. 1234').groups() @

('800', '555', '1212', '1234'")

>>> phonePattern.search('800-555-1212").groups() ©)
('800', '555', '1212', '")

>>> phonePattern.search('work 1-(800) 555.1212 #1234") @
>>>

I. This is the same as in the previous example, except now you’re matching \D*, zero or more non-numeric
characters, before the first remembered group (the area code). Notice that you’re not remembering these
non-numeric characters (they’re not in parentheses). If you find them, you’ll just skip over them and then
start remembering the area code whenever you get to it.

2. You can successfully parse the phone number, even with the leading left parenthesis before the area code.
(The right parenthesis after the area code is already handled; it’s treated as a non-numeric separator and
matched by the \D* after the first remembered group.)

3. Just a sanity check to make sure you haven’t broken anything that used to work. Since the leading characters
are entirely optional, this matches the beginning of the string, then zero non-numeric characters, then a
remembered group of three digits (800), then one non-numeric character (the hyphen), then a remembered
group of three digits (555), then one non-numeric character (the hyphen), then a remembered group of four
digits (1212), then zero non-numeric characters, then a remembered group of zero digits, then the end of
the string.

4. This is where regular expressions make me want to gouge my eyes out with a blunt object. Why doesn’t
this phone number match? Because there’s a 1 before the area code, but you assumed that all the leading

characters before the area code were non-numeric characters (\D*). Aargh.

147

Let’s back up for a second. So far the regular expressions have all matched from the beginning of the string.
But now you see that there may be an indeterminate amount of stuff at the beginning of the string that you
want to ignore. Rather than trying to match it all just so you can skip over it, let’s take a different approach:

don’t explicitly match the beginning of the string at all. This approach is shown in the next example.

>>> phonePattern = re.compile(r' (\d{3})\D*(\d{3})\D*(\d{4})\D*(\d*)$') @
>>> phonePattern.search('work 1-(800) 555.1212 #1234"').groups() @
('800', '555', '1212', '1234")

>>> phonePattern.search('800-555-1212").groups() ®
('800', '555', '"1212', '")
>>> phonePattern.search('80055512121234") .groups() @

('800', '555', '1212', '1234")

Note the lack of ~ in this regular expression. You are not matching the beginning of the string anymore.
There’s nothing that says you need to match the entire input with your regular expression. The regular
expression engine will do the hard work of figuring out where the input string starts to match, and go from
there.

Now you can successfully parse a phone number that includes leading characters and a leading digit, plus any
number of any kind of separators around each part of the phone number.

Sanity check. This still works.

. That still works too.

See how quickly a regular expression can get out of control? Take a quick glance at any of the previous

iterations. Can you tell the difference between one and the next?
While you still understand the final answer (and it is the final answer; if you've discovered a case it doesn’t

handle, | don’t want to know about it), let’s write it out as a verbose regular expression, before you forget

why you made the choices you made.

148

>>> phonePattern = re.compile(r'"’

don't match beginning of string, number can start anywhere
(\d{3}) # area code is 3 digits (e.g. '800")
\D* # optional separator is any number of non-digits
(\d{3}) # trunk is 3 digits (e.g. '555")
\D* # optional separator
(\d{4}) # rest of number is 4 digits (e.g. '1212")
\D* # optional separator
(\d*) # extension is optional and can be any number of digits
$ # end of string

""", re.VERBOSE)
>>> phonePattern.search('work 1-(800) 555.1212 #1234').groups() @
('800', '555', '1212', '1234")
>>> phonePattern.search('800-555-1212") @
('800', '555', '1212', '")

I. Other than being spread out over multiple lines, this is exactly the same regular expression as the last step,

so it's no surprise that it parses the same inputs.

2. Final sanity check. Yes, this still works. You're done.

5.7. SUMMARY

This is just the tiniest tip of the iceberg of what regular expressions can do. In other words, even though

you’re completely overwhelmed by them now, believe me, you ain’t seen nothing yet.
You should now be familiar with the following techniques:

* ~ matches the beginning of a string.

* $ matches the end of a string.

* \b matches a word boundary.

149

\d matches any numeric digit.

\D matches any non-numeric character.

x? matches an optional x character (in other words, it matches an x zero or one times).

x* matches x zero or more times.

x+ matches x one or more times.

x{n,m} matches an x character at least n times, but not more than m times.

(alb]c) matches exactly one of a, b or c.

(x) in general is a remembered group. You can get the value of what matched by using the groups() method

of the object returned by re.search.
Regular expressions are extremely powerful, but they are not the correct solution for every problem. You

should learn enough about them to know when they are appropriate, when they will solve your problems,

and when they will cause more problems than they solve.

150

CHAPTER 6. CLOSURES ¢« GENERATORS

% My spelling is Wobbly. It’s good spelling but it Wobbles, and the letters get in the wrong places. *
— Winnie-the-Pooh

6.1. DIVING IN

aving grown up the son of a librarian and an English major, | have always been fascinated by
languages. Not programming languages. Well yes, programming languages, but also natural languages. Take
English. English is a schizophrenic language that borrows words from German, French, Spanish, and Latin (to
name a few). Actually, “borrows” is the wrong word; “pillages” is more like it. Or perhaps

“assimilates” — like the Borg. Yes, | like that.

We are the Borg. Your linguistic and etymological distinctiveness will be added to our own.

Resistance is futile.

In this chapter, you're going to learn about plural nouns. Also, functions that return other functions,
advanced regular expressions, and generators. But first, let’s talk about how to make plural nouns. (If you

haven’t read the chapter on regular expressions, now would be a good time. This chapter assumes you

understand the basics of regular expressions, and it quickly descends into more advanced uses.)

If you grew up in an English-speaking country or learned English in a formal school setting, you're probably

familiar with the basic rules:

If a word ends in S, X, or Z, add ES. Bass becomes basses, fax becomes faxes, and waltz becomes waltzes.
If a word ends in a noisy H, add ES; if it ends in a silent H, just add S. What'’s a noisy H? One that gets
combined with other letters to make a sound that you can hear. So coach becomes coaches and rash

becomes rashes, because you can hear the CH and SH sounds when you say them. But cheetah becomes

cheetahs, because the H is silent.

151

* If a word ends in Y that sounds like I, change the Y to IES; if the Y is combined with a vowel to sound like
something else, just add S. So vacancy becomes vacancies, but day becomes days.

* If all else fails, just add S and hope for the best.
(I know, there are a lot of exceptions. Man becomes men and woman becomes women, but human becomes
humans. Mouse becomes mice and louse becomes lice, but house becomes houses. Knife becomes knives and

wife becomes wives, but lowlife becomes lowlifes. And don’t even get me started on words that are their own

plural, like sheep, deer, and haiku.)
Other languages, of course, are completely different.

Let’s design a Python library that automatically pluralizes English nouns. We’ll start with just these four rules,

but keep in mind that you’ll inevitably need to add more.

6.2. I KNow, LET’S USE REGULAR EXPRESSIONS!

So you’re looking at words, which, at least in English, means you’re looking at strings of characters. You
have rules that say you need to find different combinations of characters, then do different things to them.

This sounds like a job for regular expressions!

152

import re

def plural(noun):

®

if re.search('[sxz]$', noun):
return re.sub('$', 'es', noun) @

elif re.search('["aejoudgkprt]h$', noun):
return re.sub('$', 'es', noun)

elif re.search('["aeiouly$', noun):
return re.sub('y$', 'ies', noun)

else:

return noun + 's'

I. This is a regular expression, but it uses a syntax you didn’t see in Regular Expressions. The square brackets

mean “match exactly one of these characters.” So [sxz] means “s, or x, or z”, but only one of them. The $
should be familiar; it matches the end of string. Combined, this regular expression tests whether noun ends
with s, x, or z.

2. This re.sub() function performs regular expression-based string substitutions.

Let’s look at regular expression substitutions in more detail.

>>> import re
>>> re.search('[abc]', 'Mark") @

<_sre.SRE_Match object at Ox001C1FA8>

>>> re.sub('[abc]', 'o', 'Mark') @
"Mork'
>>> re.sub('[abc]', 'o', 'rock') ®
"rook'
>>> re.sub('[abc]', '0o', 'caps') @
"oops'

I. Does the string Mark contain a, b, or c? Yes, it contains a.
2. OK, now find a, b, or ¢, and replace it with o. Mark becomes Mork.

3. The same function turns rock into rook.

153

4. You might think this would turn caps into oaps, but it doesn’t. re.sub replaces all of the matches, not just
the first one. So this regular expression turns caps into oops, because both the ¢ and the a get turned into

0.

And now, back to the plural() function...

def plural(noun):
if re.search('[sxz]$', noun):
return re.sub('$', 'es', noun) @
elif re.search('[®aeioudgkprtlh$', noun): @
return re.sub('$', 'es', noun)
elif re.search('["aeiouly$', noun): ©)

return re.sub('y$', 'ies', noun)
else:

return noun + 's'

I. Here, you're replacing the end of the string (matched by $) with the string es. In other words, adding es to
the string. You could accomplish the same thing with string concatenation, for example noun + 'es"', but |
chose to use regular expressions for each rule, for reasons that will become clear later in the chapter.

2. Look closely, this is another new variation. The ” as the first character inside the square brackets means
something special: negation. [“abc] means “any single character except a, b, or c”. So [“aeioudgkprt]
means any character except a, e, i, o, u, d, g, k, p, r, or t. Then that character needs to be followed by h,
followed by end of string. You're looking for words that end in H where the H can be heard.

3. Same pattern here: match words that end in Y, where the character before the Y is not a, e, i, o, or u.

You're looking for words that end in Y that sounds like I.

Let’s look at negation regular expressions in more detail.

154

>>> qmport re
>>> re.search('["aeiouly$', 'vacancy') @

<_sre.SRE_Match object at Ox001C1FA8>

>>> re.search('["aeiouly$', 'boy') @
>>>

>>> re.search('["aeiouly$', 'day')

>>>

>>> re.search('["aeiouly$', 'pita') ©)
>>>

vacancy matches this regular expression, because it ends in cy, and c is not a, e, i, o, or u.
boy does not match, because it ends in oy, and you specifically said that the character before the y could
not be o. day does not match, because it ends in ay.

pita does not match, because it does not end in y.

>>> re.sub('y$', 'ies', 'vacancy'))
'vacancies'

>>> re.sub('y$', 'ies', 'agency')

"agencies'

>>> re.sub('([*aeioul)y$', r'\lies', 'vacancy') @
'vacancies'

This regular expression turns vacancy into vacancies and agency into agencies, which is what you
wanted. Note that it would also turn boy into boies, but that will never happen in the function because you
did that re.search first to find out whether you should do this re.sub.

. Just in passing, | want to point out that it is possible to combine these two regular expressions (one to find
out if the rule applies, and another to actually apply it) into a single regular expression. Here’s what that
would look like. Most of it should look familiar: you’re using a remembered group, which you learned in

Case study: Parsing Phone Numbers. The group is used to remember the character before the letter y. Then

in the substitution string, you use a new syntax, \1, which means “hey, that first group you remembered?
put it right here.” In this case, you remember the c before the y; when you do the substitution, you
substitute c in place of ¢, and ies in place of y. (If you have more than one remembered group, you can

use \2 and \3 and so on.)

155

Regular expression substitutions are extremely powerful, and the \1 syntax makes them even more powerful.
But combining the entire operation into one regular expression is also much harder to read, and it doesn’t
directly map to the way you first described the pluralizing rules. You originally laid out rules like “if the
word ends in S, X, or Z, then add ES”. If you look at this function, you have two lines of code that say “if

the word ends in S, X, or Z, then add ES”. It doesn’t get much more direct than that.

6.3. A LIST OF FUNCTIONS

Now you’re going to add a level of abstraction. You started by defining a list of rules: if this, do that,
otherwise go to the next rule. Let’s temporarily complicate part of the program so you can simplify another

part.

156

import re

def

def

def

def

def

def

def

def

match_sxz(noun):

return re.search('[sxz]1%$', noun)

apply_sxz(noun):

return re.sub('$', 'es', noun)

match_h(noun):

return re.search('[®aeioudgkprtlh$', noun)

apply_h(noun):

return re.sub('$', 'es', noun)

match_y(noun):

return re.search('[®aeiouly$', noun)

apply_y(noun):

return re.sub('y$', 'ies', noun)

match_default(noun):

return True

apply_default(noun):

return noun + 's'

rules = ((match_sxz, apply_sxz),

def

(match_h, apply_h),

(match_y, apply_y),
(match_default, apply_default)

)

plural(noun):

for matches_rule, apply_rule 1in rules:

157

if matches_rule(noun):

return apply_rule(noun)

Now, each match rule is its own function which returns the results of calling the re.search() function.
Each apply rule is also its own function which calls the re.sub() function to apply the appropriate
pluralization rule.

Instead of having one function (plural()) with multiple rules, you have the rules data structure, which is a
sequence of pairs of functions.

Since the rules have been broken out into a separate data structure, the new plural() function can be
reduced to a few lines of code. Using a for loop, you can pull out the match and apply rules two at a time
(one match, one apply) from the rules structure. On the first iteration of the for loop, matches_rule will
get match_sxz, and apply_rule will get apply_sxz. On the second iteration (assuming you get that far),
matches_rule will be assigned match_h, and apply_rule will be assigned apply_h. The function is
guaranteed to return something eventually, because the final match rule (match_default) simply returns

True, meaning the corresponding apply rule (apply_default) will always be applied.

Python is an object, including functions. The rules data

structure contains functions — not names of functions,
but actual function objects. When they get assigned in
the for loop, then matches_rule and apply_rule are « 99
actual functions that you can call. On the first iteration The rules
of the for loop, this is equivalent to calling Uariable l.S a

matches_sxz (noun), and if it returns a match, calling

apply_sxz(noun).

sequence of

If this additional level of abstraction is confusing, try .
unrolling the function to see the equivalence. The entire palrs Of

for loop is equivalent to the following:

functions.

158

def plural(noun):

if match_sxz(noun):

return apply_sxz(noun)
if match_h(noun):

return apply_h(noun)
if match_y(noun):

return apply_y(noun)
if match_default(noun):

return apply_default(noun)

The benefit here is that the plural() function is now simplified. It takes a sequence of rules, defined

elsewhere, and iterates through them in a generic fashion.

Get a match rule
Does it match? Then call the apply rule and return the result.

No match? Go to step |.

The rules could be defined anywhere, in any way. The plural() function doesn’t care.

Now, was adding this level of abstraction worth it? Well, not yet. Let’s consider what it would take to add a
new rule to the function. In the first example, it would require adding an if statement to the plural()
function. In this second example, it would require adding two functions, match_foo() and apply_foo(), and
then updating the rules sequence to specify where in the order the new match and apply functions should

be called relative to the other rules.

But this is really just a stepping stone to the next section. Let’'s move on...

159

6.4. A LIST OF PATTERNS

Defining separate named functions for each match and apply rule isn’t really necessary. You never call them
directly; you add them to the rules sequence and call them through there. Furthermore, each function
follows one of two patterns. All the match functions call re.search(), and all the apply functions call

re.sub(). Let’s factor out the patterns so that defining new rules can be easier.
import re

def build_match_and _apply_ functions(pattern, search, replace):
def matches rule(word): @
return re.search(pattern, word)
def apply_rule(word): @
return re.sub(search, replace, word)

return (matches _rule, apply_rule) ®

build_match_and_apply_functions() is a function that builds other functions dynamically. It takes
pattern, search and replace, then defines a matches _rule() function which calls re.search() with the
pattern that was passed to the build_match_and_apply_functions() function, and the word that was
passed to the matches_rule() function you're building. Whoa.

Building the apply function works the same way. The apply function is a function that takes one parameter,
and calls re.sub() with the search and replace parameters that were passed to the
build_match_and_apply_functions () function, and the word that was passed to the apply_rule()
function you’re building. This technique of using the values of outside parameters within a dynamic function is
called closures. You’re essentially defining constants within the apply function you’re building: it takes one
parameter (word), but it then acts on that plus two other values (search and replace) which were set
when you defined the apply function.

Finally, the build_match_and_apply_functions() function returns a tuple of two values: the two functions
you just created. The constants you defined within those functions (pattern within the matches_rule()
function, and search and replace within the apply_rule() function) stay with those functions, even after

you return from build_match_and_apply_functions(). That’s insanely cool.

If this is incredibly confusing (and it should be, this is weird stuff), it may become clearer when you see how

to use it.

160

patterns = \)
(

("[sxzl$', '$, 'es'),
('["aeioudgkprt]lh$', '$', ‘'es'),
(' (qu|[*aeioul)y$', 'y$', 'ies'),
('$', "$', 's"))

)
rules = [build_match_and_apply_functions(pattern, search, replace) ®

for (pattern, search, replace) in patterns]

Our pluralization “rules” are now defined as a tuple of tuples of strings (not functions). The first string in
each group is the regular expression pattern that you would use in re.search() to see if this rule matches.
The second and third strings in each group are the search and replace expressions you would use in
re.sub() to actually apply the rule to turn a noun into its plural.

There’s a slight change here, in the fallback rule. In the previous example, the match_default() function
simply returned True, meaning that if none of the more specific rules matched, the code would simply add
an s to the end of the given word. This example does something functionally equivalent. The final regular
expression asks whether the word has an end ($ matches the end of a string). Of course, every string has
an end, even an empty string, so this expression always matches. Thus, it serves the same purpose as the
match_default() function that always returned True: it ensures that if no more specific rule matches, the
code adds an s to the end of the given word.

This line is magic. It takes the sequence of strings in patterns and turns them into a sequence of functions.
How? By “mapping” the strings to the build_match_and_apply_functions() function. That is, it takes each
triplet of strings and calls the build_match_and_apply_functions() function with those three strings as
arguments. The build_match_and_apply_functions() function returns a tuple of two functions. This means
that rules ends up being functionally equivalent to the previous example: a list of tuples, where each tuple is
a pair of functions. The first function is the match function that calls re.search(), and the second function

is the apply function that calls re.sub().

Rounding out this version of the script is the main entry point, the plural() function.

161

def plural(noun):
for matches_rule, apply_rule in rules: @
if matches_rule(noun):

return apply_rule(noun)

Since the rules list is the same as the previous example (really, it is), it should come as no surprise that the
plural() function hasn’t changed at all. It’s completely generic; it takes a list of rule functions and calls them
in order. It doesn’t care how the rules are defined. In the previous example, they were defined as separate
named functions. Now they are built dynamically by mapping the output of the
build_match_and_apply_functions() function onto a list of raw strings. It doesn’t matter; the plural()

function still works the same way.

6.5. A FILE OF PATTERNS

You’ve factored out all the duplicate code and added enough abstractions so that the pluralization rules are
defined in a list of strings. The next logical step is to take these strings and put them in a separate file,

where they can be maintained separately from the code that uses them.

First, let’s create a text file that contains the rules you want. No fancy data structures, just whitespace-

delimited strings in three columns. Let’s call it plural4-rules.txt.

[sxz]$ $ es
[“aeioudgkprt]h$ $ es
[“aeiouly$ y$ ies
$ $ s

Now let’s see how you can use this rules file.

162

import re

def build _match_and apply_ functions(pattern, search, replace): @
def matches rule(word):
return re.search(pattern, word)
def apply_rule(word):
return re.sub(search, replace, word)

return (matches_rule, apply_rule)

rules = []
with open('plurald4-rules.txt', encoding="'utf-8') as pattern_file:
for line in pattern_file:

pattern, search, replace = line.split(None, 3)

© ® @ ©

rules.append(build match_and _apply_functions(

pattern, search, replace))

The build_match_and_apply_functions() function has not changed. You're still using closures to build
two functions dynamically that use variables defined in the outer function.

The global open() function opens a file and returns a file object. In this case, the file we’re opening contains
the pattern strings for pluralizing nouns. The with statement creates what’s called a context: when the with

block ends, Python will automatically close the file, even if an exception is raised inside the with block.

Each line in the file really has three values, but they’re separated by whitespace (tabs or spaces, it makes no
difference). To split it out, use the split() string method. The first argument to the split() method is
None, which means “split on any whitespace (tabs or spaces, it makes no difference).” The second argument
is 3, which means “split on whitespace 3 times, then leave the rest of the line alone.” A line like [sxz]$ $
es will be broken up into the list ['[sxz]$', '$', 'es'], which means that pattern will get '[sxz]$',
search will get '$', and replace will get 'es'. That’s a lot of power in one little line of code.

Finally, you pass pattern, search, and replace to the build_match_and_apply_functions() function,
which returns a tuple of functions. You append this tuple to the rules list, and rules ends up storing the

list of match and apply functions that the plural() function expects.

163

The improvement here is that you’ve completely separated the pluralization rules into an external file, so it

can be maintained separately from the code that uses it. Code is code, data is data, and life is good.

6.6. GENERATORS

Wouldn't it be grand to have a generic plural() function that parses the rules file? Get rules, check for a
match, apply appropriate transformation, go to next rule. That’s all the plural() function has to do, and

that’s all the plural () function should do.

def rules(rules_filename):
with open(rules filename, encoding='utf-8') as pattern_ file:
for line in pattern_file:
pattern, search, replace = line.split(None, 3)

yield build_match_and_apply_functions(pattern, search, replace)

def plural(noun, rules_ filename='plural5-rules.txt'):
for matches _rule, apply _rule in rules(rules_ filename):
if matches_rule(noun):
return apply_rule(noun)

raise ValueError('no matching rule for {0}'.format(noun))

How the heck does that work? Let’s look at an interactive example first.

164

>>> def make_counter(x):
print('entering make_counter')
while True:
yield x)
print('incrementing x')

X =x +1

>>> counter = make_counter(2) @
>>> counter ®
<generator object at 0x001C9Cle>

>>> next(counter) @
entering make_counter

2

>>> next(counter) ®
incrementing Xx

3

>>> next(counter) ®

incrementing x

4

The presence of the yield keyword in make_counter means that this is not a normal function. It is a special
kind of function which generates values one at a time. You can think of it as a resumable function. Calling it
will return a generator that can be used to generate successive values of x.

To create an instance of the make_counter generator, just call it like any other function. Note that this does
not actually execute the function code. You can tell this because the first line of the make_counter ()
function calls print (), but nothing has been printed yet.

The make_counter () function returns a generator object.

The next () function takes a generator object and returns its next value. The first time you call next () with
the counter generator, it executes the code in make_counter () up to the first yield statement, then
returns the value that was yielded. In this case, that will be 2, because you originally created the generator
by calling make_counter(2).

Repeatedly calling next () with the same generator object resumes exactly where it left off and continues
until it hits the next yield statement. All variables, local state, &c. are saved on yield and restored on

next (). The next line of code waiting to be executed calls print (), which prints incrementing x. After

165

that, the statement x = x + 1. Then it loops through the while loop again, and the first thing it hits is the
statement yield x, which saves the state of everything and returns the current value of x (now 3).

. The second time you call next (counter), you do all the same things again, but this time x is now 4.

Since make_counter sets up an infinite loop, you could theoretically do this forever, and it would just keep

incrementing x and spitting out values. But let’s look at more productive uses of generators instead.

6.6.1. A FIBONACCI GENERATOR

def fib(max):
a, b=o0, 1 ()
while a < max:

yield a @

a, b=b,a+b @ .
“leélei,’

. The Fibonacci sequence is a sequence of numbers where

pauses a

each number is the sum of the two numbers before it.

It starts with 0 and 1, goes up slowly at first, then more

function.

ccnext()»

and more rapidly. To start the sequence, you need two
variables: a starts at 0, and b starts at 1.

a is the current number in the sequence, so yield it.

b is the next number in the sequence, so assign that to resumes

a, but also calculate the next value (a + b) and assign

that to b for later use. Note that this happens in

where it left

set a to 5 (the previous value of b) and b to 8 (the sum Oﬁ

parallel; if a is 3 and b is 5, then a, b = b, a + b will

of the previous values of a and b).

So you have a function that spits out successive

Fibonacci numbers. Sure, you could do that with

recursion, but this way is easier to read. Also, it works well with for loops.

166

>>> from fibonacci import fib
>>> for n in fib(1000): @
print(n, end=' ") @
®©1 123581321 34 55 89 144 233 377 610 987
>>> 1ist(fib(1000)) ®
[, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987]

. You can use a generator like fib() in a for loop directly. The for loop will automatically call the next ()
function to get values from the fib() generator and assign them to the for loop index variable (n).

Each time through the for loop, n gets a new value from the yield statement in fib(), and all you have to
do is print it out. Once fib() runs out of numbers (a becomes bigger than max, which in this case is 1000),
then the for loop exits gracefully.

. This is a useful idiom: pass a generator to the 1ist() function, and it will iterate through the entire

generator (just like the for loop in the previous example) and return a list of all the values.

6.6.2. A PLURAL RULE GENERATOR

Let’s go back to plural5.py and see how this version of the plural() function works.

def rules(rules _filename):
with open(rules _filename, encoding='utf-8') as pattern file:
for line in pattern_file:
pattern, search, replace = line.split(None, 3))

yield build match_and_apply_functions(pattern, search, replace) @

def plural(noun, rules_filename='plural5-rules.txt'):
for matches rule, apply rule 1in rules(rules_filename): ®
if matches_rule(noun):
return apply_rule(noun)

raise ValueError('no matching rule for {0}'.format(noun))

No magic here. Remember that the lines of the rules file have three values separated by whitespace, so you

use line.split(None, 3) to get the three “columns” and assign them to three local variables.

167

2. And then you yield. What do you yield? Two functions, built dynamically with your old friend,
build_match_and_apply_functions (), which is identical to the previous examples. In other words,
rules() is a generator that spits out match and apply functions on demand.

3. Since rules() is a generator, you can use it directly in a for loop. The first time through the for loop, you
will call the rules() function, which will open the pattern file, read the first line, dynamically build a match
function and an apply function from the patterns on that line, and yield the dynamically built functions. The
second time through the for loop, you will pick up exactly where you left off in rules() (which was in the
middle of the for line in pattern_file loop). The first thing it will do is read the next line of the file
(which is still open), dynamically build another match and apply function based on the patterns on that line in

the file, and yield the two functions.

What have you gained over stage 4? Startup time. In stage 4, when you imported the plural4 module, it
read the entire patterns file and built a list of all the possible rules, before you could even think about calling
the plural() function. With generators, you can do everything lazily: you read the first rule and create
functions and try them, and if that works you don’t ever read the rest of the file or create any other

functions.

What have you lost? Performance! Every time you call the plural() function, the rules() generator starts
over from the beginning — which means re-opening the patterns file and reading from the beginning, one line

at a time.

What if you could have the best of both worlds: minimal startup cost (don’t execute any code on import),
and maximum performance (don’t build the same functions over and over again). Oh, and you still want to
keep the rules in a separate file (because code is code and data is data), just as long as you never have to

read the same line twice.

To do that, you'll need to build your own iterator. But before you do that, you need to learn about Python

classes.

168

6.7. FURTHER READING

PEP 255: Simple Generators

Understanding Python’s “with” statement

Closures in Python

Fibonacci numbers

English Irregular Plural Nouns

169

http://www.python.org/dev/peps/pep-0255/
http://effbot.org/zone/python-with-statement.htm
http://ynniv.com/blog/2007/08/closures-in-python.html
http://en.wikipedia.org/wiki/Fibonacci_number
http://www2.gsu.edu/~wwwesl/egw/crump.htm

CHAPTER 7. CLASSES « ITERATORS

& Fast is East, and West is West, and never the twain shall meet. *®

— Rudyard Kipling

~.1. DIVING IN

terators are the “secret sauce” of Python 3. They’re everywhere, underlying everything, always just out

of sight. Comprehensions are just a simple form of iterators. Generators are just a simple form of iterators. A

function that yields values is a nice, compact way of building an iterator without building an iterator. Let me

show you what | mean by that.

Remember the Fibonacci generator? Here it is as a built-from-scratch iterator:

170

http://en.wikiquote.org/wiki/Rudyard_Kipling

class Fib:

"'"iterator that yields numbers in the Fibonacci sequence'''’

def __init__ (self, max):

self.max = max

def _ iter_ (self):

self.a 0]

self.b

1

return self
def _ next_ (self):
fib = self.a
if fib > self.max:
raise StopIteration

self.a, self.b = self.b, self.a + self.b

return fib
Let’s take that one line at a time.
class Fib:

class? What’s a class?

7.2. DEFINING CLASSES

Python is fully object-oriented: you can define your own classes, inherit from your own or built-in classes,

and instantiate the classes you’'ve defined.

171

Defining a class in Python is simple. As with functions, there is no separate interface definition. Just define
the class and start coding. A Python class starts with the reserved word class, followed by the class name.

Technically, that’s all that’s required, since a class doesn’t need to inherit from any other class.

class PapayaWhip: @

pass @

The name of this class is PapayaWhip, and it doesn’t inherit from any other class. Class names are usually
capitalized, EachWordLikeThis, but this is only a convention, not a requirement.
You probably guessed this, but everything in a class is indented, just like the code within a function, if

statement, for loop, or any other block of code. The first line not indented is outside the class.

This PapayaWhip class doesn’t define any methods or attributes, but syntactically, there needs to be
something in the definition, thus the pass statement. This is a Python reserved word that just means “move
along, nothing to see here”. It’s a statement that does nothing, and it’s a good placeholder when you’re

stubbing out functions or classes.

[X3" The pass statement in Python is like a empty set of curly braces ({}) in Java or C.

Many classes are inherited from other classes, but this one is not. Many classes define methods, but this one
does not. There is nothing that a Python class absolutely must have, other than a name. In particular, C++
programmers may find it odd that Python classes don’t have explicit constructors and destructors. Although

it's not required, Python classes can have something similar to a constructor: the __init__() method.

7.2.1. THE __init__ () METHOD

This example shows the initialization of the Fib class using the __init__ method.

class Fib:

iterator that yields numbers in the Fibonacci sequence''' @

def _ init_ (self, max): @

172

I. Classes can (and should) have docstrings too, just like modules and functions.

2. The __init__() method is called immediately after an instance of the class is created. It would be
tempting — but technically incorrect — to call this the “constructor” of the class. It’s tempting, because it
looks like a C++ constructor (by convention, the __init__() method is the first method defined for the
class), acts like one (it’s the first piece of code executed in a newly created instance of the class), and even
sounds like one. Incorrect, because the object has already been constructed by the time the __init__ ()

method is called, and you already have a valid reference to the new instance of the class.

The first argument of every class method, including the __init__ () method, is always a reference to the
current instance of the class. By convention, this argument is named self. This argument fills the role of the
reserved word this in C++ or Java, but self is not a reserved word in Python, merely a naming

convention. Nonetheless, please don’t call it anything but self; this is a very strong convention.
In the __init__ () method, self refers to the newly created object; in other class methods, it refers to the

instance whose method was called. Although you need to specify self explicitly when defining the method,

you do not specify it when calling the method; Python will add it for you automatically.

~7.3. INSTANTIATING CLASSES

Instantiating classes in Python is straightforward. To instantiate a class, simply call the class as if it were a
function, passing the arguments that the __init__() method requires. The return value will be the newly

created object.

173

w

>>> import fibonacci2

>>> fib = fibonacci2.Fib(100) @

>>> f1ib @)
<fibonacci2.Fib object at Ox00DB8810>
>>> fib.__class__ ®
<class 'fibonacci2.Fib'>

>>> fib. doc__ @

"iterator that yields numbers in the Fibonacci sequence’

. You are creating an instance of the Fib class (defined in the fibonacci2 module) and assigning the newly

created instance to the variable fib. You are passing one parameter, 100, which will end up as the max
argument in Fib’s __init__ () method.

fib is now an instance of the Fib class.

Every class instance has a built-in attribute, _ class__, which is the object’s class. Java programmers may be
familiar with the Class class, which contains methods like getName () and getSuperclass() to get metadata
information about an object. In Python, this kind of metadata is available through attributes, but the idea is
the same.

You can access the instance’s docstring just as with a function or a module. All instances of a class share

the same docstring.

I=3" In Python, simply call a class as if it were a function to create a new instance of the

class. There is no explicit new operator like there is in C++ or Java.

~7.4. INSTANCE VARIABLES

On to the next line:

174

class Fib:
def __init__ (self, max):

self.max = max)

. What is self.max? It’s an instance variable. It is completely separate from max, which was passed into the
__init__() method as an argument. self.max is “global” to the instance. That means that you can access it

from other methods.

class Fib:
def __init__ (self, max):

self.max = max)

def _ next_ (self):
fib = self.a

if fib > self.max: @

self.max is defined in the __init__ () method...

...and referenced in the _ next_ () method.

Instance variables are specific to one instance of a class. For example, if you create two Fib instances with

different maximum values, they will each remember their own values.

>>> import fibonacci2

>>> fibl

fibonacci2.Fib(100)

>>> fib2

fibonacci2.Fib(200)
>>> fibl.max

100

>>> fib2.max

200

175

~7.5. A FIBONACCI ITERATOR

Now you’re ready to learn how to build an iterator. An iterator is just a class that defines an __iter__ ()

method.
class Fib: @
def __init__ (self, max): @ All three of these class
self.max = max methods, init_,
__iter__,and
def _ iter_ (self): ® __next_, begin and
self.a = 0 end with a pair of
self.b =1 underscore ()
return self characters. Why is that?
There’s nothing magical
def _ next_ (self): @ about it, but it usually
fib = self.a indicates that these are
if fib > self.max: “special methods.” The
raise StopIteration ® only thing “special”
self.a, self.b = self.b, self.a + self.b about special methods is
return fib ® that they aren’t called
directly; Python calls
. To build an iterator from scratch, Fib needs to be a class, not a them when you use some
function. other syntax on the class
. “Calling” Fib(max) is really creating an instance of this class and or an instance of the

calling its __init__() method with max. The __init__() method
saves the maximum value as an instance variable so other methods

can refer to it later.

. The _iter__ () method is called whenever someone calls

iter (fib). (As you'll see in a minute, a for loop will call this automatically, but you can also call it yourself
manually.) After performing beginning-of-iteration initialization (in this case, resetting self.a and self.b, our
two counters), the __iter__ () method can return any object that implements a _ next__() method. In this
case (and in most cases), __iter__ () simply returns self, since this class implements its own _ next_ ()

method.

176

4. The _next__ () method is called whenever someone calls next () on an iterator of an instance of a class.
That will make more sense in a minute.

5. When the _ next__ () method raises a StopIteration exception, this signals to the caller that the iteration
is exhausted. Unlike most exceptions, this is not an error; it’s a normal condition that just means that the
iterator has no more values to generate. If the caller is a for loop, it will notice this StopIteration
exception and gracefully exit the loop. (In other words, it will swallow the exception.) This little bit of magic
is actually the key to using iterators in for loops.

6. To spit out the next value, an iterator’s _ next__ () method simply returns the value. Do not use yield
here; that’s a bit of syntactic sugar that only applies when you’re using generators. Here you’re creating your

own iterator from scratch; use return instead.
Thoroughly confused yet? Excellent. Let’s see how to call this iterator:
>>> from fibonacci2 import Fib
>>> for n in Fib(1000):
print(n, end="' ")

© 112358 13 21 34 55 89 144 233 377 610 987

Why, it’s exactly the same! Byte for byte identical to how you called Fibonacci-as-a-generator (modulo one

capital letter). But how?

There’s a bit of magic involved in for loops. Here’s what happens:

* The for loop calls Fib(1000), as shown. This returns an instance of the Fib class. Call this fib_inst.

» Secretly, and quite cleverly, the for loop calls iter (fib_inst), which returns an iterator object. Call this
fib_iter. In this case, fib_iter == fib_inst, because the _ iter__ () method returns self, but the for
loop doesn’t know (or care) about that.

* To “loop through” the iterator, the for loop calls next(fib_iter), which calls the _ next__ () method on
the fib_iter object, which does the next-Fibonacci-number calculations and returns a value. The for loop
takes this value and assigns it to n, then executes the body of the for loop for that value of n.

* How does the for loop know when to stop? I'm glad you asked! When next (fib_iter) raises a
StopIteration exception, the for loop will swallow the exception and gracefully exit. (Any other exception
will pass through and be raised as usual.) And where have you seen a StopIteration exception? In the

__next__ () method, of course!

177

7.6. A PLURAL RULE ITERATOR

rules generator as an iterator.

iter(f) calls

f.__iter
next(f) calls

f.__next

178

class LazyRules:

rules filename = 'plural6-rules.txt'

def __init_ (self):
self.pattern_file = open(self.rules _filename, encoding='utf-8')

self.cache = []

def _ iter_ (self):
self.cache_index = 0

return self

def _ next_ (self):
self.cache_index +=1
if len(self.cache) >= self.cache_index:

return self.cache[self.cache_index - 1]

if self.pattern_file.closed:

raise Stoplteration

line = self.pattern_file.readline()
if not line:
self.pattern_file.close()

raise StopIteration

pattern, search, replace = line.split(None, 3)

funcs = build _match_and_apply_functions(
pattern, search, replace)

self.cache.append(funcs)

return funcs

rules = LazyRules()

So this is a class that implements __iter__ () and _ _next__ (), so it can be used as an iterator. Then, you

instantiate the class and assign it to rules. This happens just once, on import.

179

Let’s take the class one bite at a time.

class LazyRules:

rules filename = 'plural6-rules.txt'

def __init__ (self):
self.pattern _file = open(self.rules filename, encoding='utf-8') @

self.cache = [] @

When we instantiate the LazyRules class, open the pattern file but don’t read anything from it. (That comes
later.)
After opening the patterns file, initialize the cache. You'll use this cache later (in the _ next__ () method) as

you read lines from the pattern file.

Before we continue, let’s take a closer look at rules_filename. It's not defined within the __iter_ ()
method. In fact, it's not defined within any method. It’s defined at the class level. It’s a class variable, and
although you can access it just like an instance variable (self.rules_filename), it is shared across all

instances of the LazyRules class.

180

>>> import pluralé

>>> rl = plural6.LazyRules()
>>> r2 = plural6.LazyRules()
>>> rl.rules_filename ®

"'pluralé-rules.txt'

>>> r2.rules_filename

"'pluralé-rules.txt'

>>> r2.rules_filename = 'r2-override.txt' @
>>> r2.rules_filename

'r2-override.txt'

>>> rl.rules_filename

'plural6-rules.txt’

>>> r2. class__.rules_filename ®
"'plural6-rules.txt’

>>> r2. class__.rules_filename = 'papayawhip.txt' @
>>> rl.rules_filename

"papayawhip.txt’

>>> r2.rules_filename ®

'r2-overridetxt'

I. Each instance of the class inherits the rules_filename attribute with the value defined by the class.

2. Changing the attribute’s value in one instance does not affect other instances...

3. ...nor does it change the class attribute. You can access the class attribute (as opposed to an individual
instance’s attribute) by using the special _ class__ attribute to access the class itself.

4. If you change the class attribute, all instances that are still inheriting that value (like r1 here) will be affected.

5. Instances that have overridden that attribute (like r2 here) will not be affected.

And now back to our show.

def iter_ (self): @

self.cache_index = 0

return self @

I. The __iter__() method will be called every time someone — say, a for loop — calls iter(rules).

181

2. The one thing that every __iter__() method must do is return an iterator. In this case, it returns self,
which signals that this class defines a _ next__ () method which will take care of returning values

throughout the iteration.

def _ next_ (self):)

pattern, search, replace = line.split(None, 3)

funcs = build_match_and_apply_functions(@
pattern, search, replace)

self.cache.append(funcs) ©

return funcs

I. The __next__ () method gets called whenever someone — say, a for loop — calls next(rules). This
method will only make sense if we start at the end and work backwards. So let’s do that.

2. The last part of this function should look familiar, at least. The build_match_and_apply_functions()
function hasn’t changed; it’s the same as it ever was.

3. The only difference is that, before returning the match and apply functions (which are stored in the tuple

funcs), we're going to save them in self.cache.

Moving backwards...

def _ next_ (self):

line = self.pattern_file.readline() @
if not line: @
self.pattern_file.close()
raise StopIteration ©)

182

A bit of advanced file trickery here. The readline() method (note: singular, not the plural readlines())
reads exactly one line from an open file. Specifically, the next line. (File objects are iterators too! It’s iterators all
the way down...)

If there was a line for readline() to read, 1ine will not be an empty string. Even if the file contained a
blank line, 1ine would end up as the one-character string '\n' (a carriage return). If 1ine is really an empty
string, that means there are no more lines to read from the file.

When we reach the end of the file, we should close the file and raise the magic StopIteration exception.
Remember, we got to this point because we needed a match and apply function for the next rule. The next
rule comes from the next line of the file... but there is no next line! Therefore, we have no value to return.

The iteration is over. (<3 The party’s over... 9)

Moving backwards all the way to the start of the _ next__ () method...

def _ next_ (self):
self.cache_index +=1
if len(self.cache) >= self.cache_index:

return self.cache[self.cache_index - 1] @

if self.pattern_file.closed:

raise StopIteration @

self.cache will be a list of the functions we need to match and apply individual rules. (At least that should
sound familiar!) self.cache_index keeps track of which cached item we should return next. If we haven’t
exhausted the cache yet (i.e. if the length of self.cache is greater than self.cache_index), then we have a
cache hit! Hooray! We can return the match and apply functions from the cache instead of building them
from scratch.

On the other hand, if we don’t get a hit from the cache, and the file object has been closed (which could
happen, further down the method, as you saw in the previous code snippet), then there’s nothing more we
can do. If the file is closed, it means we’ve exhausted it — we’ve already read through every line from the
pattern file, and we’ve already built and cached the match and apply functions for each pattern. The file is

exhausted; the cache is exhausted; I'm exhausted. Wait, what? Hang in there, we’re almost done.

183

Putting it all together, here’s what happens when:

When the module is imported, it creates a single instance of the LazyRules class, called rules, which opens
the pattern file but does not read from it.

When asked for the first match and apply function, it checks its cache but finds the cache is empty. So it
reads a single line from the pattern file, builds the match and apply functions from those patterns, and caches
them.

Let’s say, for the sake of argument, that the very first rule matched. If so, no further match and apply
functions are built, and no further lines are read from the pattern file.

Furthermore, for the sake of argument, suppose that the caller calls the plural() function again to pluralize
a different word. The for loop in the plural() function will call iter(rules), which will reset the cache
index but will not reset the open file object.

The first time through, the for loop will ask for a value from rules, which will invoke its _ next__ ()
method. This time, however, the cache is primed with a single pair of match and apply functions,
corresponding to the patterns in the first line of the pattern file. Since they were built and cached in the
course of pluralizing the previous word, they’re retrieved from the cache. The cache index increments, and
the open file is never touched.

Let’s say, for the sake of argument, that the first rule does not match this time around. So the for loop
comes around again and asks for another value from rules. This invokes the _ next_ () method a second
time. This time, the cache is exhausted — it only contained one item, and we’re asking for a second — so
the _ next__ () method continues. It reads another line from the open file, builds match and apply functions
out of the patterns, and caches them.

This read-build-and-cache process will continue as long as the rules being read from the pattern file don’t
match the word we'’re trying to pluralize. If we do find a matching rule before the end of the file, we simply
use it and stop, with the file still open. The file pointer will stay wherever we stopped reading, waiting for
the next readline() command. In the meantime, the cache now has more items in it, and if we start all
over again trying to pluralize a new word, each of those items in the cache will be tried before reading the

next line from the pattern file.

We have achieved pluralization nirvana.

Minimal startup cost. The only thing that happens on import is instantiating a single class and opening a

file (but not reading from it).

184

2. Maximum performance. The previous example would read through the file and build functions
dynamically every time you wanted to pluralize a word. This version will cache functions as soon as they’re
built, and in the worst case, it will only read through the pattern file once, no matter how many words you
pluralize.

3. Separation of code and data. All the patterns are stored in a separate file. Code is code, and data is

data, and never the twain shall meet.

I3 Is this really nirvana? Well, yes and no. Here’s something to consider with the
LazyRules example: the pattern file is opened (during __init__()), and it remains
open until the final rule is reached. Python will eventually close the file when it exits,
or after the last instantiation of the LazyRules class is destroyed, but still, that could
be a long time. If this class is part of a long-running Python process, the Python

interpreter may never exit, and the LazyRules object may never get destroyed.

There are ways around this. Instead of opening the file during __init__ () and
leaving it open while you read rules one line at a time, you could open the file, read
all the rules, and immediately close the file. Or you could open the file, read one

rule, save the file position with the tell() method, close the file, and later re-open

it and use the seek () method to continue reading where you left off. Or you could

not worry about it and just leave the file open, like this example code does.
Programming is design, and design is all about trade-offs and constraints. Leaving a file
open too long might be a problem; making your code more complicated might be a
problem. Which one is the bigger problem depends on your development team, your

application, and your runtime environment.

7.7. FURTHER READING

* PEP 234: Iterators

185

http://docs.python.org/3.1/library/stdtypes.html#iterator-types
http://www.python.org/dev/peps/pep-0234/

» PEP 255: Simple Generators

* Generator Tricks for Systems Programmers

186

http://www.python.org/dev/peps/pep-0255/
http://www.dabeaz.com/generators/

CHAPTER 8. ADVANCED ITERATORS

% Great fleas have little fleas upon their backs to bite ‘em,
And little fleas have lesser fleas, and so ad infinitum. *®

— Augustus De Morgan

8.1. DIVING IN

ust as regular expressions put strings on steroids, the itertools module puts iterators on steroids. But

first, | want to show you a classic puzzle.

HAWAII + IDAHO + IOWA + OHIO == STATES

510199 + 98153 + 9301 + 3593 == 621246

H=-5
A=1
W=0
I=09
D =8
0=3
S =6
T =2
E =4

Puzzles like this are called cryptarithms or alphametics. The letters spell out actual words, but if you replace
each letter with a digit from 0-9, it also “spells” an arithmetic equation. The trick is to figure out which
letter maps to each digit. All the occurrences of each letter must map to the same digit, no digit can be

repeated, and no “word” can start with the digit 0.

187

In this chapter, we’ll dive into an incredible Python
program originally written by Raymond Hettinger. This

program solves alphametic puzzles in just 14 lines of code.

188

The most
well-known

alphametic

puzzle is
SEND +
MORE =
MONEY.

import re

import itertools

def solve(puzzle):
words = re.findall('[A-Z]+"', puzzle.upper())
unique_characters = set(''.join(words))
assert len(unique_characters) <= 10, 'Too many letters'
first _letters = {word[0] for word in words}
n = len(first_letters)
sorted characters = ''.join(first letters) + \
"'.join(unique_characters - first letters)
characters = tuple(ord(c) for c in sorted _characters)
digits = tuple(ord(c) for c in '0123456789")
zero = digits[0]
for guess in itertools.permutations(digits, len(characters)):
if zero not in guess[:n]:
equation = puzzle.translate(dict(zip(characters, guess)))
if eval(equation):

return equation

if __name__ == '__main__"':
import sys
for puzzle in sys.argv[l:]:
print(puzzle)
solution = solve(puzzle)

if solution:

print(solution)

You can run the program from the command line. On Linux, it would look like this. (These may take some

time, depending on the speed of your computer, and there is no progress bar. Just be patient!)

189

you@localhost:~/diveintopython3/examples$ python3 alphametics.py "HAWAII + IDAHO + IOWA + OHI(
HAWAII + IDAHO + IOWA + OHIO = STATES

510199 + 98153 + 9301 + 3593 == 621246

you@localhost:~/diveintopython3/examples$ python3 alphametics.py "I + LOVE + YOU == DORA"

I + LOVE + YOU == DORA

1 + 2784 + 975 == 3760

you@localhost:~/diveintopython3/examples$ python3 alphametics.py "SEND + MORE == MONEY"

SEND + MORE == MONEY

9567 + 1085 == 10652

8.2. FINDING ALL OCCURRENCES OF A PATTERN
The first thing this alphametics solver does is find all the letters (A-Z) in the puzzle.

>>> import re

>>> re.findall('[0-9]+', '16 2-by-4s in rows of 8') @
['16', '2', '4', '8']

>>> re.findall('[A-Z]+', 'SEND + MORE == MONEY') @
['SEND', 'MORE', 'MONEY']

The re module is Python’s implementation of regular expressions. It has a nifty function called findal1l()

which takes a regular expression pattern and a string, and finds all occurrences of the pattern within the
string. In this case, the pattern matches sequences of numbers. The findall() function returns a list of all
the substrings that matched the pattern.

Here the regular expression pattern matches sequences of letters. Again, the return value is a list, and each

item in the list is a string that matched the regular expression pattern.

Here’s another example that will stretch your brain a little.

190

. The sixth sick sheikh's sixth sheep's sick.

v x> WD

>>> re.findall(' s.*? s', "The sixth sick sheikh's sixth sheep's sick.")

['" sixth s', " sheikh's s", " sheep's s"]

Surprised? The regular expression looks for a space, an
s, and then the shortest possible series of any character
(.*?), then a space, then another s. Well, looking at

that input string, | see five matches:

This 1s the

The sixth sick sheikh's sixth sheep's sick. hardest

The sixth sick sheikh's sixth sheep's sick.
The sixth sick sheikh's sixth sheep's sick.

The sixth sick sheikh's sixth sheep's sick.

But the re.findall() function only returned three

matches. Specifically, it returned the first, the third, and the English

the fifth. Why is that? Because it doesn’t return
overlapping matches. The first match overlaps with the language
second, so the first is returned and the second is

skipped. Then the third overlaps with the fourth, so the

third is returned and the fourth is skipped. Finally, the

fifth is returned. Three matches, not five.

This has nothing to do with the alphametics solver; | just thought it was interesting.

8.3. FINDING THE UNIQUE ITEMS IN A SEQUENCE

191

http://en.wikipedia.org/wiki/Tongue-twister
http://en.wikipedia.org/wiki/Tongue-twister
http://en.wikipedia.org/wiki/Tongue-twister

>>> a list = ['The', 'sixth', 'sick', "sheik's", 'sixth', "sheep's", 'sick']
>>> set(a_list) @

{'sixth', 'The', "sheep's", 'sick', "sheik's"}

>>> a string = 'EAST IS EAST'

>>> set(a_string) @

{'"A", " ", "E", "I'", 'S", 'T'}

>>> words = ['SEND', 'MORE', 'MONEY']

>>> "' join(words) ©)
"SENDMOREMONEY'
>>> set(''.join(words)) @

{'E', 'D', 'M', '0', 'N', 'S', 'R', IYI}

Given a list of several strings, the set () function will return a set of unique strings from the list. This makes
sense if you think of it like a for loop. Take the first item from the list, put it in the set. Second. Third.
Fourth. Fifth — wait, that’s in the set already, so it only gets listed once, because Python sets don’t allow
duplicates. Sixth. Seventh — again, a duplicate, so it only gets listed once. The end result? All the unique
items in the original list, without any duplicates. The original list doesn’t even need to be sorted first.

The same technique works with strings, since a string is just a sequence of characters.

Given a list of strings, ''.join(a_list) concatenates all the strings together into one.

So, given a list of strings, this line of code returns all the unique characters across all the strings, with no

duplicates.

The alphametics solver uses this technique to build a set of all the unique characters in the puzzle.

unique_characters = set(''.join(words))

This list is later used to assign digits to characters as the solver iterates through the possible solutions.

192

8.4. MAKING ASSERTIONS

Like many programming languages, Python has an assert statement. Here’s how it works.

>>> assert 1 + 1 == 2 ®
>>> assert 1 + 1 == 3 @
Traceback (most recent call last):
File "<stdin>", 1line 1, in <module>
AssertionError
>>> gssert 2 + 2 == 5, "Only for very large values of 2" @
Traceback (most recent call last):
File "<stdin>", 1line 1, in <module>
AssertionError: Only for very large values of 2
The assert statement is followed by any valid Python expression. In this case, the expression 1 + 1 == 2

evaluates to True, so the assert statement does nothing.
However, if the Python expression evaluates to False, the assert statement will raise an AssertionError.
You can also include a human-readable message that is printed if the AssertionError is raised.
Therefore, this line of code:
assert len(unique_characters) <= 10, 'Too many letters'

...is equivalent to this:

if len(unique_characters) > 10:

raise AssertionError('Too many letters')
The alphametics solver uses this exact assert statement to bail out early if the puzzle contains more than

ten unique letters. Since each letter is assigned a unique digit, and there are only ten digits, a puzzle with

more than ten unique letters can not possibly have a solution.

193

8.5. GENERATOR EXPRESSIONS

A generator expression is like a generator function without the function.

>>> unique_characters {'e', 'D', '"M', 'O', 'N', 'S", 'R", 'Y'"'}
>>> gen = (ord(c) for c in unique_characters) @

>>> gen @

<generator object <genexpr> at Ox00BADC10>

>>> next(gen) ©)

69

>>> next(gen)

68

>>> tuple(ord(c) for c in unique_characters) @

(69, 68, 77, 79, 78, 83, 82, 89)

A generator expression is like an anonymous function that yields values. The expression itself looks like a list

comprehension, but it’s wrapped in parentheses instead of square brackets.

The generator expression returns... an iterator.

Calling next (gen) returns the next value from the iterator.

If you like, you can iterate through all the possible values and return a tuple, list, or set, by passing the
generator expression to tuple(), list(), or set(). In these cases, you don’t need an extra set of
parentheses — just pass the “bare” expression ord(c) for c¢ in unique_characters to the tuple()

function, and Python figures out that it’s a generator expression.

I3~ Using a generator expression instead of a list comprehension can save both CPU and
RAM. If you're building an list just to throw it away (e.g. passing it to tuple() or

set()), use a generator expression instead!

Here’s another way to accomplish the same thing, using a generator function:

194

def ord _map(a_string):
for ¢ in a_string:
yield ord(c)

gen = ord_map(unique_characters)

The generator expression is more compact but functionally equivalent.

8.6. CALCULATING PERMUTATIONS... THE LLAZY WAY!

First of all, what the heck are permutations! Permutations are a mathematical concept. (There are actually
several definitions, depending on what kind of math you’re doing. Here I'm talking about combinatorics, but if

that doesn’t mean anything to you, don’t worry about it. As always, Wikipedia is your friend.)

The idea is that you take a list of things (could be numbers, could be letters, could be dancing bears) and
find all the possible ways to split them up into smaller lists. All the smaller lists have the same size, which
can be as small as | and as large as the total number of items. Oh, and nothing can be repeated.
Mathematicians say things like “let’s find the permutations of 3 different items taken 2 at a time,” which

means you have a sequence of 3 items and you want to find all the possible ordered pairs.

195

http://en.wikipedia.org/wiki/Permutation

®

>>> import itertools

®

>>> perms = itertools.permutations([1l, 2, 3], 2)
>>> next(perms) ©)
(1, 2)
>>> next(perms)
(1, 3)
>>> next(perms)
(2, 1) @
>>> next(perms)
(2, 3)
>>> next(perms)
3, 1
>>> next(perms)
(3, 2)
>>> next(perms) ®
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

StopIteration

The itertools module has all kinds of fun stuff in it, including a permutations () function that does all the
hard work of finding permutations.

The permutations() function takes a sequence (here a list of three integers) and a number, which is the
number of items you want in each smaller group. The function returns an iterator, which you can use in a
for loop or any old place that iterates. Here I'll step through the iterator manually to show all the values.
The first permutation of [1, 2, 3] taken 2 at a time is (1, 2).

Note that permutations are ordered: (2, 1) is different than (1, 2).

That’s it! Those are all the permutations of [1, 2, 3] taken 2 at a time. Pairs like (1, 1) and (2, 2)
never show up, because they contain repeats so they aren’t valid permutations. When there are no more

permutations, the iterator raises a StopIteration exception.

196

The permutations() function doesn’t have to take a

list. It can take any sequence — even a string.

197

The

itertools

module has

all kinds of
fun stuff.

>>> import itertools
>>> perms = itertools.permutations('ABC', 3) @
>>> next(perms)
('A', 'B', 'C") @
>>> next(perms)
('A', 'C', 'B")
>>> next(perms)
('B', 'A', 'C")
>>> next(perms)
('B', 'Cc', 'A")
>>> next(perms)
('ct, 'A', 'B")
>>> next(perms)
('c', 'B', 'A")
>>> next(perms)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
StopIteration
>>> 1ist(itertools.permutations('ABC', 3)) ©)
[C"A', 'B', 'C"), ('A", 'C'", 'B"),
('s", 'A*, 'C"), ('B", 'C', "A"),
cc, AT, "B, ('Ch, BT, TAY)

I. A string is just a sequence of characters. For the purposes of finding permutations, the string 'ABC' is
equivalent to the list ['A', 'B', 'C'].

2. The first permutation of the 3 items ['A', 'B', 'C'], taken 3 at a time, is ('A', 'B', 'C'). There are
five other permutations — the same three characters in every conceivable order.

3. Since the permutations() function always returns an iterator, an easy way to debug permutations is to pass

that iterator to the built-in 1ist () function to see all the permutations immediately.

198

8.7. OTHER FUN STUFF IN THE itertools MODULE

>>> import itertools
>>> 1ist(itertools.product('ABC', '123')))
[C'AY, "1, ('A', "2, ("A', '3Y),
(', "1, ('B", "2'), ('B", "3'),
(¢, ¢Cnyot2h), e, "30)1
>>> list(itertools.combinations('ABC', 2)) @

[C'AY, 'BY), ("A", 'Ch), ('B', "CY)]

I. The itertools.product() function returns an iterator containing the Cartesian product of two sequences.
2. The itertools.combinations() function returns an iterator containing all the possible combinations of the

given sequence of the given length. This is like the itertools.permutations() function, except
combinations don’t include items that are duplicates of other items in a different order. So
itertools.permutations('ABC', 2) will return both ('A', 'B') and ('B', 'A') (among others), but
itertools.combinations('ABC', 2) will not return ('B', 'A') because it is a duplicate of ('A', 'B') in
a different order.

>>> names = list(open('examples/favorite-people.txt', encoding='utf-8')) @

>>> names

['Dora\n', "Ethan\n', 'Wesley\n', 'John\n', 'Anne\n',

'Mike\n', 'Chris\n', 'Sarah\n', 'Alex\n', 'Lizzie\n']

>>> names = [name.rstrip() for name in names] @

>>> names

['Dora', 'Ethan', 'Wesley', 'John', 'Anne',

'Mike', 'Chris', 'Sarah', 'Alex', 'Lizzie']

>>> names = sorted(names) ©

>>> names

['Alex', 'Anne', 'Chris', 'Dora', 'Ethan',

"John', 'Lizzie', 'Mike', 'Sarah', 'Wesley']

>>> names = sorted(names, key=len) @

>>> names

['Alex', 'Anne', 'Dora', 'John', 'Mike',

'Chris', 'Ethan', 'Sarah', 'Lizzie', 'Wesley']

199

. This idiom returns a list of the lines in a text file.

Unfortunately (for this example), the 1ist (open(filename)) idiom also includes the carriage returns at the
end of each line. This list comprehension uses the rstrip() string method to strip trailing whitespace from
each line. (Strings also have an 1strip() method to strip leading whitespace, and a strip() method which
strips both.)

. The sorted() function takes a list and returns it sorted. By default, it sorts alphabetically.

But the sorted() function can also take a function as the key parameter, and it sorts by that key. In this
case, the sort function is len(), so it sorts by len(each item). Shorter names come first, then longer, then

longest.

What does this have to do with the itertools module? I'm glad you asked.

200

..continuing from the previous interactive shell..

>>> import itertools

>>> groups = itertools.groupby(names, len) @

>>> groups

<itertools.groupby object at Ox00BB20C0O>

>>> list(groups)

[(4, <itertools. grouper object at OxOOBA8BFO>),
(5, <itertools. grouper object at Ox00BB4050>),
(6, <itertools. grouper object at Ox00BB4030>)]

>>> groups = itertools.groupby(names, len) @

>>> for name_length, name_iter in groups: ©)

print('Names with {0:d} letters:'.format(name_length))
for name in name_iter:

print(name)

Names with 4 letters:
Alex

Anne

Dora

John

Mike

Names with 5 letters:
Chris

Ethan

Sarah

Names with 6 letters:
Lizzie

Wesley

I. The itertools.groupby() function takes a sequence and a key function, and returns an iterator that
generates pairs. Each pair contains the result of key_function(each item) and another iterator containing
all the items that shared that key result.

2. Calling the 1ist() function “exhausted” the iterator, i.e. you've already generated every item in the iterator

to make the list. There’s no “reset” button on an iterator; you can’t just start over once you've exhausted

201

it. If you

want to loop through it again (say, in the upcoming for loop), you need to call

itertools.groupby () again to create a new iterator.

In this example, given a list of names already sorted by length, itertools.groupby(names, len) will put all

the 4-letter names in one iterator, all the 5-letter names in another iterator, and so on. The groupby ()

function is completely generic; it could group strings by first letter, numbers by their number of factors, or

any other key function you can think of.

33" The itertools.groupby() function only works if the input sequence is already
sorted by the grouping function. In the example above, you grouped a list of names
by the 1en() function. That only worked because the input list was already sorted by

length.

Are you watching closely?

>>> list(range(0, 3))

[0, 1, 2]

>>> list(range (10, 13))

[10, 11, 12]

>>> 1ist(itertools.chain(range(0, 3), range(l0, 13))))
[0, 1, 2, 10, 11, 12]

>>> 1ist(zip(range(0, 3), range(lo, 13))) @
[(O6, 10), (1, 11), (2, 12)]

>>> 1ist(zip(range(0, 3), range(lo, 14))) ®
[(0, 10), (1, 11), (2, 12)]

>>> list(itertools.zip_longest(range(®, 3), range(l0, 14))) @
[(6, 10), (1, 11), (2, 12), (None, 13)]

The itertools.chain() function takes two iterators and returns an iterator that contains all the items

from the first iterator, followed by all the items from the second iterator. (Actually, it can take any number

of iterators, and it chains them all in the order they were passed to the function.)

202

2. The zip() function does something prosaic that turns out to be extremely useful: it takes any number of
sequences and returns an iterator which returns tuples of the first items of each sequence, then the second
items of each, then the third, and so on.

3. The zip() function stops at the end of the shortest sequence. range (10, 14) has 4 items (10, |1, 12, and
13), but range (0, 3) only has 3, so the zip() function returns an iterator of 3 items.

4. On the other hand, the itertools.zip_longest() function stops at the end of the longest sequence,

inserting None values for items past the end of the shorter sequences.

OK, that was all very interesting, but how does it relate to the alphametics solver? Here’s how:

>>> characters = ('S', 'M', 'E', 'D', '0O', 'N', 'R', 'Y")
>>> guess = ('1', '2', '0"', '3', '4', '5', '6', '7")

>>> tuple(zip(characters, guess)) @

(¢'s', "1y, (¢'mY,or2Y), ('EY, '), ('D', '3Y),

(‘o", "4'), ('N", '5"), ('R', '6"), ('Y', '7"))

>>> dict(zip(characters, guess)) @

{'‘e': 'e@¢'", 'D': '3", 'M': '2', '0': '4",

"N': '5', ‘'S': '1', 'R': '6', 'Y': '7"}

I. Given a list of letters and a list of digits (each represented here as |-character strings), the zip function will
create a pairing of letters and digits, in order.

2. Why is that cool? Because that data structure happens to be exactly the right structure to pass to the
dict() function to create a dictionary that uses letters as keys and their associated digits as values. (This

isn’t the only way to do it, of course. You could use a dictionary comprehension to create the dictionary

directly.) Although the printed representation of the dictionary lists the pairs in a different order (dictionaries
have no “order” per se), you can see that each letter is associated with the digit, based on the ordering of

the original characters and guess sequences.

The alphametics solver uses this technique to create a dictionary that maps letters in the puzzle to digits in

the solution, for each possible solution.

203

characters = tuple(ord(c) for c in sorted _characters)

digits = tuple(ord(c) for c in '0123456789")

for guess in itertools.permutations(digits, len(characters)):

equation = puzzle.translate(dict(zip(characters, guess)))

But what is this translate() method? Ah, now you're getting to the really fun part.

8.8. A NEw KIND OF STRING MANIPULATION

Python strings have many methods. You learned about some of those methods in the Strings chapter:

lower (), count(), and format (). Now | want to introduce you to a powerful but little-known string

manipulation technique: the translate() method.

>>> translation_table = {ord('A'): ord('0")} @

>>> translation_table @
(65: 79}

>>> 'MARK'.translate(translation_table) ®
"MORK"'

String translation starts with a translation table, which is just a dictionary that maps one character to
another. Actually, “character” is incorrect — the translation table really maps one byte to another.
Remember, bytes in Python 3 are integers. The ord() function returns the ASCII value of a character,
which, in the case of A—Z, is always a byte from 65 to 90.

The translate() method on a string takes a translation table and runs the string through it. That is, it
replaces all occurrences of the keys of the translation table with the corresponding values. In this case,

“translating” MARK to MORK.

204

What does this have to do with solving alphametic

puzzles? As it turns out, everything.

Now you're

getting to

the really
fun part.

>>> characters = tuple(ord(c) for c in 'SMEDONRY") @
>>> characters

(83, 77, 69, 68, 79, 78, 82, 89)

>>> guess = tuple(ord(c) for c in '91570682") @
>>> guess

(57, 49, 53, 55, 48, 54, 56, 50)

>>> translation_table = dict(zip(characters, guess)) ®
>>> translation_table

{68: 55, 69: 53, 77: 49, 78: 54, 79: 48, 82: 56, 83: 57, 89: 50}
>>> "SEND + MORE == MONEY'.translate(translation_table) @
'9567 + 1085 == 10652

Using a generator expression, we quickly compute the byte values for each character in a string. characters

is an example of the value of sorted_characters in the alphametics.solve() function.
Using another generator expression, we quickly compute the byte values for each digit in this string. The

result, guess, is of the form returned by the itertools.permutations() function in the

alphametics.solve() function.

205

3. This translation table is generated by zipping characters and guess together and building a dictionary from

the resulting sequence of pairs. This is exactly what the alphametics.solve() function does inside the for
loop.

4. Finally, we pass this translation table to the translate() method of the original puzzle string. This converts
each letter in the string to the corresponding digit (based on the letters in characters and the digits in

guess). The result is a valid Python expression, as a string.

That’s pretty impressive. But what can you do with a string that happens to be a valid Python expression?

8.9. EVALUATING ARBITRARY STRINGS AS PYTHON EXPRESSIONS

This is the final piece of the puzzle (or rather, the final piece of the puzzle solver). After all that fancy string
manipulation, we’re left with a string like '9567 + 1085 == 10652'. But that’s a string, and what good is a

string? Enter eval(), the universal Python evaluation tool.

>>> eval('l + 1 == 2")

True

>>> eval('l + 1 == 3")

False

>>> eval('9567 + 1085 == 10652")

True

But wait, there’s more! The eval() function isn’t limited to boolean expressions. It can handle any Python

expression and returns any datatype.

206

>>> eval('"A" + "B"")

'AB"

>>> eval ('"MARK".translate({65: 79})")
"MORK'

>>> eval (' "AAAAA" .count ("A")")

5

55> eval(i[n*n] * 5!)

[l*l [[[l*l]

’ ’ ’ ’

But wait, that’s not all!

>>> x = §

>>> eval("x * 5") ®
25
>>> eval("pow(x, 2)") @
25

>>> import math
>>> eval("math.sqrt(x)") ®
2.2360679774997898

. The expression that eval() takes can reference global variables defined outside the eval(). If called within a

function, it can reference local variables too.

. And functions.

. And modules.

Hey, wait a minute...

>>> import subprocess

>>> eval("subprocess.getoutput('ls ~"')"))
'Desktop Library Pictures \

Documents Movies Public \

Music Sites'

>>> eval("subprocess.getoutput('rm /some/random/file')") @

207

I. The subprocess module allows you to run arbitrary shell commands and get the result as a Python string.

2. Arbitrary shell commands can have permanent consequences.
It's even worse than that, because there’s a global __import__ () function that takes a module name as a
string, imports the module, and returns a reference to it. Combined with the power of eval(), you can
construct a single expression that will wipe out all your files:

>>> eval("__import__ ('subprocess').getoutput('rm /some/random/file')") @

I. Now imagine the output of 'rm -rf ~'. Actually there wouldn’t be any output, but you wouldn’t have any

files left either.

eval() Is
EVIL

Well, the evil part is evaluating arbitrary expressions from untrusted sources. You should only use eval()
on trusted input. Of course, the trick is figuring out what’s “trusted.” But here’s something | know for
certain: you should NOT take this alphametics solver and put it on the internet as a fun little web service.

Don’t make the mistake of thinking, “Gosh, the function does a lot of string manipulation before getting a

208

string to evaluate; | can’t imagine how someone could exploit that.” Someone WILL figure out how to sneak

nasty executable code past all that string manipulation (stranger things have happened), and then you can kiss

your server goodbye.

But surely there’s some way to evaluate expressions safely? To put eval() in a sandbox where it can’t

access or harm the outside world? Well, yes and no.

>>> x = §
>>> eval("x * 5", {}, {}) €y
Traceback (most recent call last):

File "<stdin>", line 1, in <module>

File "<string>", line 1, in <module>
NameError: name 'x' is not defined
>>> eval("x * 5", {"x": x}, {}) @
>>> import math
>>> eval("math.sqrt(x)", {"x": x}, {}) ®
Traceback (most recent call last):

File "<stdin>", line 1, in <module>

File "<string>", line 1, in <module>

NameError: name 'math' is not defined

I. The second and third parameters passed to the eval() function act as the global and local namespaces for
evaluating the expression. In this case, they are both empty, which means that when the string "x * 5" is
evaluated, there is no reference to x in either the global or local namespace, so eval() throws an
exception.

2. You can selectively include specific values in the global namespace by listing them individually. Then
those — and only those — variables will be available during evaluation.

3. Even though you just imported the math module, you didn’t include it in the namespace passed to the

eval () function, so the evaluation failed.

Gee, that was easy. Lemme make an alphametics web service now!

209

http://www.securityfocus.com/blogs/746

>>> eval("pow(5, 2)", {}, {}) @
25

>>> eval("__import__ ('math").sqrt(5)", {}, {}) @
2.2360679774997898

Even though you’ve passed empty dictionaries for the global and local namespaces, all of Python’s built-in
functions are still available during evaluation. So pow (5, 2) works, because 5 and 2 are literals, and pow() is
a built-in function.

Unfortunately (and if you don’t see why it’s unfortunate, read on), the _ import__ () function is also a built-

in function, so it works too.

Yeah, that means you can still do nasty things, even if you explicitly set the global and local namespaces to

empty dictionaries when calling eval():

>>> eval("__import__ ('subprocess').getoutput('rm /some/random/file')", {}, {})

Oops. I'm glad | didn’t make that alphametics web service. Is there any way to use eval() safely? Well, yes

and no.

>>> eval("__import__ ('math').sqrt(5)",
{"__builtins__":None}, {}))
Traceback (most recent call last):
File "<stdin>", line 1, 1in <module>
File "<string>", line 1, in <module>
NameError: name ' _import ' is not defined
>>> eval("__import__ ('subprocess').getoutput('rm -rf /")",
{" __builtins__":None}, {}) @
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "<string>", line 1, in <module>

NameError: name '__import_ ' is not defined

To evaluate untrusted expressions safely, you need to define a global namespace dictionary that maps

"__builtins__" to None, the Python null value. Internally, the “built-in” functions are contained within a

210

pseudo-module called "__builtins__". This pseudo-module (i.e. the set of built-in functions) is made
available to evaluated expressions unless you explicitly override it.
Be sure you've overridden _ builtins__ . Not _ builtin__, _ built-ins__, or some other variation that

will work just fine but expose you to catastrophic risks.
So eval() is safe now? Well, yes and no.

>>> eval("2 ** 2147483647",

{" builtins__":None}, {}))

Even without access to _ builtins__, you can still launch a denial-of-service attack. For example, trying to
raise 2 to the 2147483647 power will spike your server’s CPU utilization to 100% for quite some time. (If
you’re trying this in the interactive shell, press Ctr1-C a few times to break out of it.) Technically this
expression will return a value eventually, but in the meantime your server will be doing a whole lot of

nothing.
In the end, it is possible to safely evaluate untrusted Python expressions, for some definition of “safe” that

turns out not to be terribly useful in real life. It’s fine if you're just playing around, and it’s fine if you only

ever pass it trusted input. But anything else is just asking for trouble.

8.10. PUTTING IT ALL TOGETHER

To recap: this program solves alphametic puzzles by brute force, ie. through an exhaustive search of all

possible solutions. To do this, it...

Finds all the letters in the puzzle with the re.findall() function

Find all the unique letters in the puzzle with sets and the set () function

Checks if there are more than 10 unique letters (meaning the puzzle is definitely unsolvable) with an assert

statement

Converts the letters to their ASCIl equivalents with a generator object

211

© N o U

Calculates all the possible solutions with the itertools.permutations() function

Converts each possible solution to a Python expression with the translate() string method

Tests each possible solution by evaluating the Python expression with the eval() function

Returns the first solution that evaluates to True

...in just 14 lines of code.

8.11. FURTHER READING

itertools module

itertools — lterator functions for efficient looping

Watch Raymond Hettinger’s “Easy Al with Python” talk at PyCon 2009

Recipe 576615: Alphametics solver, Raymond Hettinger’s original alphametics solver for Python 2

More of Raymond Hettinger’s recipes in the ActiveState Code repository

Alphametics on Wikipedia

Alphametics Index, including lots of puzzles and a generator to make your own

Many thanks to Raymond Hettinger for agreeing to relicense his code so | could port it to Python 3 and use

it as the basis for this chapter.

212

http://docs.python.org/3.1/library/itertools.html
http://www.doughellmann.com/PyMOTW/itertools/
http://blip.tv/file/1947373/
http://code.activestate.com/recipes/576615/
http://code.activestate.com/recipes/users/178123/
http://en.wikipedia.org/wiki/Verbal_arithmetic
http://www.tkcs-collins.com/truman/alphamet/index.shtml
http://www.tkcs-collins.com/truman/alphamet/alphamet.shtml
http://www.tkcs-collins.com/truman/alphamet/alpha_gen.shtml

CHAPTER 9. UNIT TESTING

% Certitude is not the test of certainty. We have been cocksure of many things that were not so. %

— Oliver Wendell Holmes, |r.

9.1. (NOT) DIVING IN

ids today. So spoiled by these fast computers and fancy “dynamic” languages. Write first, ship second,
debug third (if ever). In my day, we had discipline. Discipline, | say! We had to write programs by hand, on

paper, and feed them to the computer on punchcards. And we liked it!

In this chapter, you’re going to write and debug a set of utility functions to convert to and from Roman

numerals. You saw the mechanics of constructing and validating Roman numerals in “Case study: roman

The rules for Roman numerals lead to a number of interesting observations:

There is only one correct way to represent a particular number as a Roman numeral.

The converse is also true: if a string of characters is a valid Roman numeral, it represents only one number
(that is, it can only be interpreted one way).

There is a limited range of numbers that can be expressed as Roman numerals, specifically 1 through 3999.
The Romans did have several ways of expressing larger numbers, for instance by having a bar over a numeral
to represent that its normal value should be multiplied by 1000. For the purposes of this chapter, let’s
stipulate that Roman numerals go from 1 to 3999.

There is no way to represent 0 in Roman numerals.

There is no way to represent negative numbers in Roman numerals.

There is no way to represent fractions or non-integer numbers in Roman numerals.

213

http://en.wikiquote.org/wiki/Oliver_Wendell_Holmes,_Jr.

Let’s start mapping out what a roman.py module should do. It will have two main functions, to_roman() and
from_roman(). The to_roman() function should take an integer from 1 to 3999 and return the Roman

numeral representation as a string...

Stop right there. Now let’s do something a little unexpected: write a test case that checks whether the
to_roman() function does what you want it to. You read that right: you're going to write code that tests

code that you haven’t written yet.

This is called test-driven development, or TDD. The set of two conversion functions — to_roman (), and later
from_roman () — can be written and tested as a unit, separate from any larger program that imports them.

Python has a framework for unit testing, the appropriately-named unittest module.

Unit testing is an important part of an overall testing-centric development strategy. If you write unit tests, it
is important to write them early and to keep them updated as code and requirements change. Many people
advocate writing tests before they write the code they’re testing, and that’s the style I'm going to

demonstrate in this chapter. But unit tests are beneficial no matter when you write them.

Before writing code, writing unit tests forces you to detail your requirements in a useful fashion.

While writing code, unit tests keep you from over-coding. When all the test cases pass, the function is
complete.

When refactoring code, they can help prove that the new version behaves the same way as the old version.
When maintaining code, having tests will help you cover your ass when someone comes screaming that your
latest change broke their old code. (“But sir, all the unit tests passed when | checked it in...”)

When writing code in a team, having a comprehensive test suite dramatically decreases the chances that
your code will break someone else’s code, because you can run their unit tests first. (I've seen this sort of
thing in code sprints. A team breaks up the assignment, everybody takes the specs for their task, writes unit
tests for it, then shares their unit tests with the rest of the team. That way, nobody goes off too far into

developing code that doesn’t play well with others.)

214

9.2. A SINGLE QUESTION

A test case answers a single question about the code it

is testing. A test case should be able to...

..run completely by itself, without any human input. Unit

testing is about automation.

Every test 1s

...determine by itself whether the function it is testing
has passed or failed, without a human interpreting the -
s an island.
..run in isolation, separate from any other test cases

(even if they test the same functions). Each test case is

an island.

Given that, let’s build a test case for the first requirement:

The to_roman() function should return the Roman numeral representation for all integers 1 to 3999.

It is not immediately obvious how this code does... well, anything. It defines a class which has no

__init__() method. The class does have another method, but it is never called. The entire script has a

__main__ block, but it doesn’t reference the class or its method. But it does do something, | promise.

215

import romanl

import unittest

class KnownValues(unittest.TestCase):

known_values

¢ (1, 'I"),
(2, '"1I1"),
(3, 'II1"),
(4, '"IV"),
(5, 'V,
(6, 'VI"),
(7, 'VII'),
(8, 'VIII'),
(9, '"IX"),
(10, 'X"),
(50, 'L"),
(100, 'C"),
(500, 'D"),
(1000, 'M"),
(31, 'XXXI'"),
(148, 'CXLVIII'"),
(294, 'CCXCIV'),
(312, 'CCCXII'),
(421, 'CDXXI'),
(528, 'DXXVIII'"),
(621, 'DCXXI'),
(782, 'DCCLXXXII'),
(870, 'DCCCLXX"),
(941, 'CMXLI'),
(1043, 'MXLIII'"),
(1110, 'MCX"),
(1226, '"MCCXXVI'"),
(1301, 'MCCCI'),
(1485, '"MCDLXXXV'),
(1509, 'MDIX'),

216

(1607, 'MDCVII'"),
(1754, 'MDCCLIV"),
(1832, 'MDCCCXXXII'"),
(1993, 'MCMXCIII'),
(2074, '"MMLXXIV'),
(2152, 'MMCLII"),
(2212, '"MMCCXII'"),
(2343, 'MMCCCXLIII'"),
(2499, 'MMCDXCIX'),
(2574, 'MMDLXXIV'),
(2646, 'MMDCXLVI'),
(2723, 'MMDCCXXIII'"),
(2892, 'MMDCCCXCII'"),
(2975, '"MMCMLXXV'),
(3051, 'MMMLI'),
(3185, '"MMMCLXXXV'),
(3250, 'MMMCCL"),
(3313, 'MMMCCCXIII'"),
(3408, 'MMMCDVIII'),
(3501, 'MMMDI'),
(3610, 'MMMDCX'"),
(3743, 'MMMDCCXLIII'"),
(3844, 'MMMDCCCXLIV'"),
(3888, 'MMMDCCCLXXXVIII'),
(3940, '"MMMCMXL'"),

(3999, 'MMMCMXCIX')) @

def test to_roman_known_values(self): ®
"'"to_roman should give known result with known input'''
for integer, numeral in self.known_values:
result = romanl.to_roman(integer) @

self.assertEqual (numeral, result) ®

217

if __name__ == '__main__"':

unittest.main()

To write a test case, first subclass the TestCase class of the unittest module. This class provides many
useful methods which you can use in your test case to test specific conditions.

This is a list of integer/numeral pairs that | verified manually. It includes the lowest ten numbers, the highest
number, every number that translates to a single-character Roman numeral, and a random sampling of other
valid numbers. You don’t need to test every possible input, but you should try to test all the obvious edge
cases.

Every individual test is its own method. A test method takes no parameters, returns no value, and must have
a name beginning with the four letters test. If a test method exits normally without raising an exception,
the test is considered passed; if the method raises an exception, the test is considered failed.

Here you call the actual to_roman() function. (Well, the function hasn’t been written yet, but once it is, this
is the line that will call it.) Notice that you have now defined the API for the