
rocBLAS Device Memory
Management

Lee Killough
lee.killough@amd.com

June 2019

mailto:lee.killough@amd.com

Statement of Problem

• Some rocBLAS kernels need temporary device memory, to be optimal

• Allocating and deallocating device memory is expensive and synchronizing

• Temporary device memory should be recycled across multiple rocBLAS
kernel calls within the same stream (handle)

• The API needs to be simple and easy to use

• Changes in implementation ideally should not change the rocBLAS API

• There is a critical open bug (SWDEV-176722) asking to make TRSM (not
TRSM_EX) an asynchronous call, meaning no allocation operations

Current Status

• Currently rocBLAS uses 3 different methods for allocating
device memory

1. The user passes a pointer and size of already-allocated device
memory (TRSM_EX; added to GEMM_EX but not currently used)

2. A fixed amount of device memory is allocated at handle creation
time (TRSM, TRSM_EX, TRSV)

3. A rocBLAS kernel allocates and deallocates device memory on
every call (AMAX, AMIN, ASUM, DOT, GET_VECTOR, NRM2,
SET_VECTOR, TRSM, TRTRI_BATCHED)

Considered but Rejected: Passing Pointers
and Sizes as Extra Arguments to Kernels

• It requires that the user manage and pass extra arguments which are not essential to the
mathematical problem at hand, for bookkeeping which should ideally be kept internal to
the library and managed out-of-band from the regular kernel calls

• It requires changing the API and breaking old code any time variable-size device
workspace memory needs to be added to a kernel

• It makes it harder to recycle temporary device memory across different kernels, since
the user must figure out the maximum which all of the kernels need, and pass the same
pointer to all of them, which might not be intuitive in block-structured code

• It cannot be applied to non-EX kernels, which have up to now avoided adding expert
parameters because of their burden on users, while this proposal can do it out of band

• It will be impractical to fix BLAS-1 functions which currently allocate and deallocate
device memory on every call, if we pass that responsibility onto the user and
unnecessarily complicate the BLAS-1 API; BLAS-1 functions can be fixed without breaking
their API, if the device memory is stored in the handle and handled out-of-band

Considered but Rejected: Set a rocBLAS
handle-wide Device Memory Allocation “Policy”

• Policy #1: rocBLAS never allocates device memory
―Still has the problem of querying the optimal size a kernel needs

• Policy #2: rocBLAS allocates extra device memory when needed
―Can cause surprise synchronizations to the user when it silently allocates memory

during a kernel call

―Can still be useful as the default behavior when the user does not explicitly
allocate memory

―To amortize the cost of allocations and reduce the chances of an unexpected
synchronization, a default size can be allocated at handle creation time

• Policy #3: rocBLAS allocates and deallocates device memory at every call
―Too slow and synchronizing to be worth the savings in device memory

Considered but Rejected: Create Functions
with _size Suffixes to Query optimal Sizes

rocblas_status rocblas_gemm_ex(rocblas_handle,…);
size_t rocblas_gemm_ex_size(rocblas_handle,…);

• Doubles the number of functions in the library

• Usually buffer size calculations are done in the main kernel anyway; this
duplicates them in a separate function, requiring changes in two places if
it ever changes

• Requires maintaining two functions with identical parameter lists

• Requires creating dummy _size functions which return 0 if the kernel
does not use device memory, or requires breaking the invariant that
every function can be queried as to its optimal device memory size

• Harder to maintain

Solution: Per-handle device memory allocation,
with out-of-band management

ROCBLAS_DEVICE_MEMORY_SIZE environment variable
• If > 0, sets the default handle device memory size to the specified size (in bytes)
• If ==0 or unset, lets rocBLAS manage device memory, by using a default size (like 1 MB),

and expanding it when necessary

rocblas_status rocblas_set_device_memory_size(rocblas_handle, size_t size);

• Changes the size of allocated device memory at runtime
• Any previously allocated device memory is freed
• A size > 0 sets the device memory size to the specified size (in bytes)
• A size ==0 frees the memory allocated so far, and lets rocBLAS manage device memory

in the future, expanding it when necessary

rocblas_status rocblas_get_device_memory_size(rocblas_handle, size_t *size);

• Sets *size to the current device memory size for the handle

bool rocblas_is_managing_device_memory(rocblas_handle handle);

• Returns true when device memory in handle is managed by rocBLAS

In-Band vs Out-of-Band

In-Band device memory allocation:

Out-of-Band device memory allocation:

rocBLAS kernel call device memory

M, N, K, alpha, A, LDA, B,
LDB, beta, C, LDC,…

workspace
workspace_size

rocBLAS kernel call device memory

M, N, K, alpha, A, LDA, B,
LDB, beta, C, LDC,…

workspace
workspace_size

rocBLAS kernel call device memory

M, N, K, alpha, A, LDA, B,
LDB, beta, C, LDC,…

workspace
workspace_size

O
u

t-
o

f-
b

an
d

In
-b

an
d

rocBLAS kernel call

M, N, K, alpha, A, LDA, B,
LDB, beta, C, LDC,…

rocBLAS kernel call

M, N, K, alpha, A, LDA, B,
LDB, beta, C, LDC,…

rocBLAS kernel call

M, N, K, alpha, A, LDA, B,
LDB, beta, C, LDC,…

device memory
manager

device_malloc()

rocblas_get_device_memory_size()

rocblas_set_device_memory_size() client code

optimal
memory size

rocblas_start_device_memory_size_query()

rocblas_stop_device_memory_size_query()

set_optimal_device_memory_size()
ROCBLAS_DEVICE_MEMORY_SIZE

Device Memory Size Queries
rocblas_status rocblas_start_device_memory_size_query(rocblas_handle);

• Indicates that subsequent rocBLAS kernel calls should collect the optimal device memory size in bytes for
their given kernel arguments, and keep track of the maximum

• Each kernel call can reuse temporary device memory on the same stream, so the maximum is collected

• Returns rocblas_status_size_query_mismatch if another size query is already in progress; returns
rocblas_status_success otherwise

• Can be applied to existing kernels without changing their APIs, because it is encapsulated in the
rocblas_handle class, which is universal to all rocBLAS kernels

• Does not require *_ex functions with extra void* size_t* pointers at the end of the parameter list

• Can be applied to non-_ex GEMM, TRSM, and TRSV!!!

rocblas_status rocblas_stop_device_memory_size_query(rocblas_handle, size_t* size);

• Stops collecting optimal device memory size information, and stores the maximum of the optimal sizes
collected into *size

• Returns rocblas_status_size_query_mismatch if a collection is not underway;
rocblas_status_invalid_pointer if size is nullptr; rocblas_status_success otherwise

Answering Device Memory Size Queries
bool _rocblas_handle::is_device_memory_size_query() const;

• Indicates that the current kernel call is collecting information about the optimal device memory allocation size

rocblas_status _rocblas_handle::set_optimal_device_memory_size(size...);

• Sets the optimal size(s) of device memory buffer(s) in bytes for this kernel call

• The size(s) are rounded up to the next multiple of 64 (or some other chunk size), and the running maximum is updated

• Return status:
rocblas_status_size_unchanged if the maximum optimal device memory size did not change
rocblas_status_size_increased if the maximum optimal device memory size increased
rocblas_status_internal_error if this kernel call is not supposed to be collecting size information

• The kernel should return the status returned by this function, so that it never returns rocblas_status_success

if(handle->is_device_memory_size_query())

{

size_t size = m * n * sizeof(T); // Compute optimal size

return handle->set_optimal_device_memory_size(size);

}

size_t rocblas_sizeof_datatype(rocblas_datatype type)

• Computes the sizeof a rocBLAS runtime data type

• Used to calculate the device memory size in bytes for a given kernel with runtime type
information

• Need to be careful to distinguish Ti, To, and Tc (the input, output and compute types)
when calculating the device memory size, since the temporary arrays may be storing
types of Ti, To, or Tc

• The actual size should be calculated and returned, rather than an upper bound, such as
always multiplying by sizeof(double)==8 (which is the current behavior of TRSM)

RETURN_ZERO_DEVICE_MEMORY_SIZE_IF_QUERIED(handle)

• Convenience macro which executes return rocblas_status_size_unchanged;
if this kernel call is a device memory size query

• Used at the beginning of kernels which do not need any extra device memory

rocblas_status rocblas_kernel(rocblas_handle handle, ...)

{

RETURN_ZERO_DEVICE_MEMORY_SIZE_IF_QUERIED(handle);

// ...

}

auto mem = handle->device_malloc(size...);

• Returns an opaque RAII object lending allocated device memory to a particular rocBLAS kernel invocation

• To simplify and optimize the code, only one successful allocation object can be alive at a time

• The lifetime of the returned object is the lifetime of the borrowed device memory (RAII)

• If the handle’s device memory is currently being managed by rocBLAS, it is expanded in size as necessary

• If the user allocated an explicit size of device memory, then that size is used as the limit, and no resizing or
synchronization ever occurs

• The object evaluates to false if there aren’t enough bytes available

• The object returned is convertible to void* or other pointer types, if only one size is specified

• The object can be assigned to std::tie(ptr1, ptr2, …), if more than one size is specified

• The allocation always has O(1) cost and no synchronization, if the available device memory is large
enough, or if the user had explicitly set the allocation size ahead of time

• This class hides the device memory allocation implementation from the rocBLAS kernel programmer,
while providing fast and easy access to device memory of certain requested size(s)

rocBLAS Kernel Device Memory Allocation

• Convenience operation to allocate multiple buffers of device memory for a single kernel

• device_malloc() return type can be assigned to std::tie(ptr1, ptr2, ptr3, …)

• Automatically partitions allocated memory into separate buffers of different sizes

• Automatically rounds up each buffer to a multiple of 64 (or other chunk size) for alignment purposes

• Generates optimized inlined code, such as folding the sums of the sizes if they are constexpr values

For example, device_malloc(1024, 256, size, 512) gets automatically simplified to
size+1792 at compile-time

• At most one successful allocation is done for the total size

• Multiple pointer assignment is inlined and optimized into individual pointer assignments

void *buf1, *buf2, *buf3;

size_t bufsize1, bufsize2, bufsize3;

auto mem = handle->device_malloc(bufsize1, bufsize2, bufsize2);

if(!mem)

return rocblas_status_memory_error;

std::tie(buf1, buf2, buf3) = mem; // Inlined and scalarized assignment

Multi-Buffer Device Memory Allocation

rocblas_status_memory_error

• Used to indicate that insufficient device memory has been allocated for the successful execution of a kernel

size_t size1, size2;

// Compute size1, size2

auto mem = handle->device_malloc(size1, size2);

if(!mem)

return rocblas_status_memory_error;

rocblas_status_perf_degraded

• Used to indicate that a slower algorithm was used because of insufficient device memory for the optimal algorithm

rocblas_status ret = rocblas_status_success;
auto mem1 = handle->device_malloc(size1);

if(!mem1)

{

auto mem2 = handle->device_malloc(size2);

if(mem2)
{

// Algorithm using smaller mem2 of size size2
ret = rocblas_status_perf_degraded;

} else {

// Not enough device memory for faster or slower algorithm

ret = rocblas_status_memory_error;
}

} else {

// Algorithm using larger mem1 of size size1

}
return ret;

push_pointer_mode(rocblas_pointer_mode)

• Used to save and automatically restore the current pointer mode, while switching it to a new mode

• Needed for functions which use constants on host (-1.0, 0.0, 1.0, etc.) passed to GEMM alpha, beta, etc.

• Can be compared to rocblas_pointer_mode values to get old value

• Avoids extra copies from device to host

// Switch to host pointer mode, saving current pointer mode, restored on return

auto saved_pointer_mode = handle->push_pointer_mode(rocblas_pointer_mode_host);

// Get alpha

T alpha_h;

if(saved_pointer_mode == rocblas_pointer_mode_host)

alpha_h = *alpha;

else

RETURN_IF_HIP_ERROR(hipMemcpy(&alpha_h, alpha, sizeof(T), hipMemcpyDeviceToHost));

// Original pointer mode is restored on return or exception

Example: rocblas_trsm_ex

extern "C" rocblas_status rocblas_trsm_ex(rocblas_handle handle,
rocblas_side side,
rocblas_fill uplo,
rocblas_operation trans_a,
rocblas_diagonal diag,
rocblas_int m,
rocblas_int n,
const void* alpha,
const void* a,
rocblas_int lda,
void* b,
rocblas_int ldb,
const void* invA,
rocblas_int ld_invA,
rocblas_datatype compute_type)
rocblas_trsm_option option,
size_t* x_temp_size,
void* x_temp_workspace)

• No need to pass extra parameters. Query returns optimal size, but a smaller size
can still be used with a slower algorithm, without having to explicitly specify
option = rocblas_trsm_low_memory

Example: rocblas_trsm_ex, Cont.
{

// By default return success
rocblas_status rb_memory_status = rocblas_status_success;

// Compute the optimal size in bytes for maximum speed
size_t x_temp_size = rocblas_sizeof_datatype(compute_type) * m * n;

// If this call is a device memory size query,
// return the size in bytes recommended for maximum speed
if(handle->is_device_memory_size_query())

return handle->set_optimal_device_memory_size(x_temp_size);

// Attempt to allocate the optimal size
auto x_temp_workspace = handle->device_malloc(x_temp_size);
if(!x_temp_workspace)
{

// If optimal size is not available, try the smaller size
x_temp_size = rocblas_sizeof_datatype(compute_type) * m;
x_temp_workspace = handle->device_malloc(x_temp_size);

// If the smaller size cannot be allocated, return error
if(!x_temp_workspace)

return rocblas_status_memory_error;

// Set return status to indicate degraded performance
rb_memory_status = rocblas_status_perf_degraded;

}

Example: rocblas_trsm_ex, Cont.

// Pass the large or small x_temp_size and x_temp_workspace
rb_status = rocblas_trsm_ex_template<TRSM_BLOCK>(

handle,
side,
uplo,
trans_a,
diag,
m,
n,
static_cast<const float*>(alpha),
static_cast<const float*>(a),
lda,
static_cast<float*>(b),
ldb,
static_cast<const float*>(invA),
ld_invA,
&x_temp_size,
static_cast<float*>(x_temp_workspace));

return rb_status != rocblas_status_success ? rb_status : rb_memory_status;
}

