LibXDif f(3) File Differential Library LibXDiff(3)

NAME
xdl_set_allocatqmxdl_malloc, xdl_free, xdl_realloc, xdl_init_mmfile, xdl_free_mmfile, xdl_mmfile_iscom-
pact, xdl_seek_mmfile, xdl_read_mmfile, xdl_write_mmfile, xdl_writem_mmfile, xdl_mmfile_writeallo-
cate, xdl_mmfile_ptradd, xdl_mmfile_first, xdl_mmfile_next, xdl_mmfile_size, xdl_mmfile_cmp,
xdl_mmfile_compact, xdl_diff, xdl_patch, xdl_merge3, xdl_bdiff_mb, xdl_bdiff, xdl_rabdiff_mb, xdl_rab-
diff, xdl_bdiff_tgsize, xdl_bpatch - File Differential Library support functions

SYNOPSIS
#include <xdiff.h>

int xdl_set_allocator(memallocator_t const malt);

void *xdl_malloc(unsigned int sizg);

void xdl_free(void * ptr);

void *xdl_realloc(void * ptr, unsigned intnsizg;

int xdl_init_mmfile(mmfile_t * mmf, long bsize unsigned long flags);

void xdl_free_mmfile(mmfile_t *mmf);

int xdl_mmfile_iscompact(mmfile_t *mmf);

int xdl_seek_mmfile(mmfile_t *mmf, long off);

long xdl_read_mmfile(mmfile_t *mmf, void *data, long size);

long xdl_write_mmfile(mmfile_t *mmf, void const *data, long sizé);

long xdl_writem_mmfile(mmfile_t *mmf, mmbuffer_t * mb, int nbuf);

void *xdl_mmfile_writeallocate(mmfile_t *mmf, long sizg);

long xdl_mmfile_ptradd(mmfile_t *mmf, char * ptr, long size unsigned longflags);

void *xdl_mmfile_first(mmfile_t * mmf, long *size);

void *xdl_mmfile_next(mmfile_t *mmf, long *size);

long xdl_mmfile_size(mmfile_t ‘mmf);

int xdl_mmfile_cmp(mmfile_t *mmf1 mmfile_t *mmf2;

int xdl_mmfile_compact(mmfile_t *mmfq mmfile_t *mmfc long bsize unsigned long flags);

int xdl_diff(mmfile_t * mmf1 mmfile_t *mmf2 xpparam_t const *xpp, xdemitconf_t const *xecfg xdemitcb_t *ech);
int xdl_patch(mmfile_t *mmf, mmfile_t *mmfp int mode xdemitcb_t *ech xdemitcb_t *rjechy);

int xdl_merge3(mmfile_t *mmfq mmfile_t *mmf1, mmfile_t *mmf2 xdemitcb_t *ech xdemitcb_t *rjecby);
int xdl_bdiff_mb(mmbuffer_t * mmb1 mmbuffer_t * mmb2 bdiffparam_t const *bdp, xdemitcb_t *ecb);
int xdl_bdiff(mmfile_t * mmf1 mmfile_t *mmf2 bdiffparam_t const *bdp, xdemitcb_t *ech);

int xdl_rabdiff_mb(mmbuffer_t * mmb1 mmbuffer_t * mmb2 xdemitcb_t *ech);

int xdl_rabdiff(mmfile_t * mmfl, mmfile_t *mmf2 xdemitcb_t *ecb);

long xdI_bdiff_tgsize(mmfile_t *mmfp);

int xdl_bpatch(mmfile_t *mmf, mmfile_t *mmfp xdemitcb_t *ecb);

DESCRIPTION
TheLibXDiff library implements basic and yet complete functionalities to create file differences/patches to
both binary and text files. The library uses memory files as file abstraction teegadite performance and
portability. For binary filesLibXDiff implements both (with some modification) the algorithm described in
File System Support for Delta Compresdigrioshua PMacDonald and the method described kinger-
printing by Random Polynomialsy Michael O. Rabin While for text files it follows directies described
in An O(ND) Difference Algorithm and Its Variatiohg Eugene \WMyers Memory files used by the
library are basically a collection of buffers that store the file content. Thereaddfexent requirements
for memory files when passed to diff/patch functiorext Tiles for diff/patch functions require that a single
line do not hae b pawn across tavdifferent memory file blocks. Binary diff/patch functions require
memory files to be compach compact memory files is a file whose content is stored inside a single block.
Functionalities inside the library areadable to satisfy these rules. Using tiBL_MMF_A TOMIC
memory file flag it is possible to makwrites to not split the written record across different blocks, while
the functionsxdl_mmfile_iscompacf) , xdl_mmfile_compact) andxdl_mmfile_writeallocate() are use-
full to test if the file is compact and to create a compacted version of the file itself. The text file differential
output uses the vaunified output format, by omitting the file header since the resulivayalrelatve © a

GNU 0.23 1

LibXDif f(3) File Differential Library LibXDiff(3)

single compare operation (betweerntiiles). The output format of the binary patch file is proprietary (and
binary) and it is basically a collection of gognd insert commands, kkdescribed inside the MacDonald
paper.

Functions
The following functions are defined:

int xdl_set_allocator(memallocator_t const malt);

TheLibXDiff library enable the user to set its own memory alloc#tat will be used for all the
following memory requests. The allocator must be set before to start callibidpXigiff library
with a call toxdl_set_allocato(). Thememory allocator structure contains the following mem-
bers:

typedef struct s_memallocator {

void *priv;

void *(*malloc)(void *priv, unsigned int size);

void (*free)(void *priv, void *ptr);

void *(*realloc)(void *priv, void *ptr, unsigned int nsize);
} memallocator _t;

Themalloc() function pointer will be used byibXDiff to request a memory block sizebytes.
Thefree() function pointer will be called to free a previously allocated blpick while thereal-
loc() will be used to resize thetr to a newnsizesize in bytes. Theriv structure member will be
passed to thmalloc(),free(),realloc() functions as first parametd@ihe LibXDiff user must call
xdl_set_allocatoK) before starting using the libramgtherwiseLibXDiff functions will fail due to
the lack of memory allocation suppod. typical initialization sequence f&tOSIX systems will
use the standamalloc(3), free(3), realloc(3) and will look like:

void *wrap_malloc(void *prv, unsigned int size) {
return malloc(size);
}

void wrap_free(void *pn, void *ptr) {
free(ptr);
}

void *wrap_realloc(void *piv, void *ptr, unsigned int size) {
return realloc(ptrsze);
}

void my_init_xdiff(void) {
memallocator_t malt;

malt.priv = NULL;
malt.malloc = wrap_malloc;
malt.free = wrap_free;
malt.realloc = wrap_realloc;
xdl_set_allocator(&malt);

GNU 0.23 2

LibXDif f(3) File Differential Library LibXDiff(3)

void *xdl_malloc(unsigned int sizg);
Allocates a memory block afizebytes using th&ibXDiff memory allocatorThe user can spec-

ify its own allocator using thedl_set_allocatoK) function. Thexdl_malloc() return a pointer to
the newly allocated block, ™NULL in case of failure.

void xdl_free(void * ptr);

Free a previously allocated memory block pointeghioy The ptr block must has been allocated
using eithexdl_malloc() or xdl_realloc().

void *xdl_realloc(void * ptr, unsigned intnsizg;

Resizes the memory block pointed piy to a nev size nsize Return the resized block if success-
ful, or NULL in case the reallocation fails. After a successful reallocation, thetoldock is to
be considered no more valid.

int xdl_init_mmfile(mmfile_t * mmf, long bsize unsigned long flags);

Initialize the memory filenmf by requiring an internal block size lo$§ize The flagsparameter is
a combination of the following flags :

XDL_MMF_A TOMIC Writes on the memory file will be atomic. That is, the data will not be
split on two or more different blocks.

Once axdl_init_mmfile () succeeded, a matchirdl_free_mmfile() must be called when the

user has done using the memory file, otherwise serious memory leaks will happen. The function

return O if succeed or -1 if an error is encountered.

void xdl_free_mmfile(mmfile_t *mmf);

Free all the data associated with thenf memory file.

int xdl_mmfile_iscompact(mmfile_t *mmf);

Returns an integer different from 0 if themf memory file is compact, 0O otherwise. A compact
memory file is one that ke the whole content stored inside a single block.

int xdl_seek_mmfile(mmfile_t *mmf, long off);

Set the current data pointer of the memoryrfillf to the specified offseiff from the beginning
of the file itself. Returns 0 if successful or -1 if an error happened.

long xdl_read_mmfile(mmfile_t *mmf, void *data, long size);
Request to reasizebytes from the memory filemf by storing the data inside tlatabuffer.

Returns the number of bytes read intodlaga buffer. The amount of data read can be lower than
the specifiegize The function returns -1 if an error happened.

long xdl_write_mmfile(mmfile_t *mmf, void const *data, long sizé);

Request to writsizebytes from the specified buffdatainto the memory filenmf. If the

GNU 0.23 3

LibXDif f(3) File Differential Library LibXDiff(3)

memory file has been created usingXtiid. MMF_A TOMIC flag, the write request will not be

split across different blocks. Note that all write operations done on memory files do append data
at the end the file, and writes in the middle of it are allowed. This is because the library memory
file abstraction does not need this functionality toyadable. Thefunction returns the number of
bytes written or a number lower thaizeif an error happened.

long xdl_writem_mmfile(mmfile_t *mmf, mmbuffer_t * mb, int nbuf);

Request to sequentially writdbuf memory buffers passed inside the amalyinto the memory
file mmf. The memory buffer structure is defined as :

typedef struct s_mmbuffer {
char *ptr;
long size;

} mmbuffer_t;

The ptr field is a pointer to the user data, whose size is specified insidz#ésgructure field. The
function returns the total number of bytes written or a lower number if an error happened.

void *xdl_mmfile_writeallocate(mmfile_t *mmf, long sizg);

The function request to allocate a write buffesiakebytes in themmf memory file and returns the
pointer to the allocated bufféfhe user will hae the responsibility to storeizebytes (no more,

no less) inside the memory region pointed to by the returned poiriterfiles size will grav of
sizebytes as a consequence of this operation. The function will fdtukih. if an error happened.

long xdl_mmfile_ptradd(mmfile_t *mmf, char * ptr, long size unsigned longflags);
The function adds a user specified block to the end of the memamynfile The block first byte

is pointed to byptr and its length isizebytes. Theflagsparameter can be used to specify
attributes of the user memory block. Currently supported attributes are:

XDL_MMB_READONLY Specify that the added memory block must be treated as read-only,
and eery attempt to write on it should result in a failure of the memory file writing functions.

The purpose of this function is basically imia copying memory around, by helping the library
to not drain the CPU cache. The function retwirein case of success, or -1 in case of error.

void *xdl_mmfile_first(mmfile_t * mmf, long *size);
The function is used to return the first block of thiaf memory file block chain. Theizeparam-

eter will receve the size of the block, while the function will return the pointer the the first byte of
the block itself. The function returtdULL if the file is empty.

void *xdl_mmfile_next(mmfile_t *mmf, long *size);
The function is used to return the next block ofriivaf memory file block chain. Theizeparam-

eter will receve the size of the block, while the function will return the pointer the the first byte of
the block itself. The function returddULL if the current block is the last one of the chain.

long xdl_mmfile_size(mmfile_t ‘mmf);

The function returns the size of the specified memoryrfitd.

GNU 0.23 4

LibXDif f(3) File Differential Library LibXDiff(3)

int xdl_mmfile_cmp(mmfile_t *mmf1 mmfile_t * mmf2;

Request to compare damemory filesmmflandmmf2and returns O if files are identical, or a
value different from O if files are different.

int xdl_mmfile_compact(mmfile_t *mmfq mmfile_t *mmfc long bsize unsigned long flags);

Request to create a compact version of the memomnfitéointo the (uninitialized) memory file
mmfc Thebsizeparameter specify the requested block size flags specify flags to be used to
create the neunmfcmemory file (seedl_init_mmfile ()). The function returns 0 if succedded or
-1 if an error happened.

int xdl_diff(mmfile_t * mmf1, mmfile_t *mmf2 xpparam_t const *xpp, xdemitconf_t const *xecfg
xdemitcb_t *ecb);

Request to create the difference between tlogdwt memory filesmmflandmmf2 The mmfl
memory files is considered the "old" file whitenf2is considered the "new" file. So the function
will create a patch file that once appliedrinflwill give mmf2as result. Filesnmflandmmf2

must be atomic from a line point of wigor, as an gtreme, compact), that means that a single test
line cannot spread among different memory file blocks. Xpgparameter is a pointer to a struc-
ture :

typedef struct s_xpparam {
unsigned long flags;
} X pparam_t;

that is used to specify parameters to be used by the file differential algorithnilagéield is a
combination of the following flags :

XDF_NEED_MINIMAL Requires the minimal edit script to be found by the algorithm (may be
slow).

The xecfgparameter point to a structure :

typedef struct s_xdemitconf {
long ctxlen;
} xdemitconf_t;

that is used to configure the algorithm responsible of the creation the the differential file from an
edit script. Thectxlenfield is used to specify the amount of context to be emitted inside the differ-
ential file (the value 3 is suggested for normal operations). The paraubigma pointer to a
structure :

typedef struct s_xdemitcb {

void *priv;

int (*outf)(void *, mmbuffer_t *, int);
} xdemitcb_t;

that is used by the differential file creation algorithm to emit the created datprivtield is an
opaque pointer to a user specified data, whilethifield point to a callback function that is
called internally to emit algorithm generated data rappresenting the differential file. The first
parameter of the callback is the saprev field specified inside thedemitcb_t structure. The sec-
ond parameter point to an arraymimbuffer_t (see abee for a definition of the structure) whose

GNU 0.23 5

LibXDif f(3)

File Differential Library LibXDiff(3)

element count is specified inside the last parameter of the callback itself. The callbackaysl al
be called with entire records (lines) andarea record (line) will be emitted using twdifferent
callback calls. This is important because if the called will use another memory file to store the
result, by creating the target memory file wdtbL_MMF_A TOMIC will guarantee the "atomic-
ity" of the memory file itself. The function returns 0O if succeeded or -1 if an error occurred.

int xdl_patch(mmfile_t *mmf, mmfile_t *mmfp int mode xdemitcb_t *ech xdemitcb_t *rjechy);

Request to patch the memory fitenf using the patch file stored immfp The mmf memory file
is notchanged during the operation and can be considered as readloaimodeparameter can
be one of the following values :

XDL_PATCH_NORMAL Perform standard patching éikf the patch memory filenmfphas
been created usingmf as "old" file.

XDL_PAT CH_REVERSE Apply the reverse patch. That means that thenf memory file has to

be considered as if it was specified as "new" file during the differential operatbrdiff ()).

The result of the operation will then be the file content that was used as "old" file during the differ-
ential operation.

The following flags can be specified (by or-ing them) to one of theeabo
XDL_PAT CH_IGNOREBSPACE Ignore the whitespace at the beginning and the end of the line.

Theecbwill be used by the patch algorithm to create the result file whilgeble will be used to

emit all differential chunks that cannot be applied. eldékplained abwe, callbacks are alays

called with entire records to guarantee atomicity of the resulting output. The function returns O if
succeeded without performingyafuzzy hunk detection, a posii value if it secceeded with

fuzzy hunk detection or -1 if an error occurred during the patch operation.

int xdl_merge3(mmfile_t *mmfq mmfile_t *mmf1, mmfile_t *mmf2 xdemitcb_t *ech xdemitcb_t

*rjech);

Merges three files togeth8ihe mmfofile is the original one, whilemnmflandmmf2are two modi-

fied versions ommfa The function works by creating a differential betweamfoand mmf2and

by applying the resulting patch tamfl Because of this sequeneemflchanges will be privi-

leged against the onesminf2 Theecbwill be used by the patch algorithm to create the result
file while therjecb will be used to emit all differential chunks that cannot be applied. Like
explained abwe, callbacks are alays called with entire records to guarantee atomicity of the
resulting output. The function returns 0 if succeeded or -1 if an error occurred during the patch
operation.

int xdl_bdiff(mmfile_t * mmf1, mmfile_t *mmf2 bdiffparam_t const *bdp, xdemitcb_t *ech);

GNU

Request to create the difference between tlogtdwt memory filesmmflandmmf2 The mmfl
memory files is considered the "old" file whitenf2is considered the "new" file. So the function
will create a patch file that once appliedrnflwill give mmf2as result. Filesnmflandmmf2
must be compact to malit easy and faster to perform the difference operation. Functions are
awailable to check for compactnessd]_mmfile_iscompacft)) and to ma& compact a non-com-
pact file (xdl_mmfile_compac()). An example of he to create a compact memory file
(described inside the test subdirectory) is :

int xdlt_load_mmfile(char const *fname, mmfile_t *mf, int binmode) {

char cc;
int fd;

0.23 6

LibXDif f(3)

File Differential Library LibXDiff(3)

long size, bsize;
char *blk;

if (xdl_init_mmfile(mf, XDLT_STD_BLKSIZE, XDL_MMF_ATOMIC) < 0)
return -1;
if ((fd = open(fname, O_RDONLY)) ==-1) {
perror(fname);
xdl_free_mmfile(mf);
return -1;
}
if ((size = bsize = Iseek(fd, 0, SEEK_END)) > 0 && !binmode) {
if (Iseek(fd, -1, SEEK_END) != (off_t) -1 &&
read(fd, &cc, 1) && cc I="\n’")
bsize++;
}
Iseek(fd, 0, SEEK_SET);
if (I(blk = (char *) xdl_mmfile_writeallocate(mf, bsize))) {
xdl_free_mmfile(mf);
close(fd);
return -1;

if (read(fd, blk, (size_t) size) != (size_t) size) {

perror(fname);
xdl_free_mmfile(mf);
close(fd);
return -1,
}
close(fd);
if (bsize > size)
blk[size] = "\n’;
return O;

}

The bdp parameter points to a structure :

typedef struct s_bdiffparam {
long bsize;
} bdiffparam_t;

that is used to pass information to the binary file differential algorithm.b$izeparameter spec-

ify the size of the block that will be used to decompuoseflduring the block classification phase

of the algorithm (see MacDonald paper). Suggested values go from 16 to 64, with a preferred
power of two characteristic. Thecbparameter is used to pass the emission callback to the algo-
rithm responsible of the output file creation. The function returns 0 if succeede or -1 if an error is
occurred.

int xdl_bdiff_mb(mmbuffer_t * mmb1 mmbuffer_t * mmb2 bdiffparam_t const *bdp, xdemitcb_t

*ech);

GNU

Same agd|_bdiff () but it works on memory buffer directlyhexdl_bdiff () is implemented inter-
nally with axdl_bdiff_mb () after having setup the tamemory buffers from the passed memory
files (that must be compact, as describedr@bdhe memory buffer structure is defined as :

typedef struct s_mmbuffer {

0.23 7

LibXDif f(3) File Differential Library LibXDiff(3)

char *ptr;
long size;
} mmbuffer_t;

An empty memory buffer is specified by setting fie member adlULL and thesizemember as
zero. The reason of having this function is\yoié the memory file preparation, that mightatve
copying memory from other sources. Usingxbe bdiff_mb (), the caller can setup thedawnem-
ory buffer by using, for exampleymap(2), and hencevaiding unnecessary memory copies. The
other parameters and the return value of the fungtibrbdiff_mb () are the same as the ones
already described xdl_bdiff ().

int xdl_rabdiff(mmfile_t * mmfl, mmfile_t *mmf2 xdemitcb_t *ecb);

Request to create the difference between tlogdw memory filesmmflandmmf2using the

Rabin’s polynomial fingerprinting algorithm. This algorithm typically performs faster and pro-
duces smaller deltas, when compared to the XDeléagtie. Themmflmemory files is consid-

ered the "old" file whilenmf2is considered the "new" file. So the function will create a patch file
that once applied tommflwill give mmf2as result. Filesxamflandmmf2must be compact to

male it easy and faster to perform the difference operation. Functionsalabte to check for
compactnessXdl_mmfile_iscompacf)) and to ma& compact a non-compact file (
xdl_mmfile_compac{)). Theecbparameter is used to pass the emission callback to the algo-
rithm responsible of the output file creation. The function returns 0 if succeede or -1 if an error is
occurred.

int xdl_rabdiff_mb(mmbuffer_t * mmb1 mmbuffer_t * mmb2 xdemitcb_t *ech);

Same agd|_rabdiff () but it works on memory buffer directlyhe memory buffer structure is
defined as :

typedef struct s_mmbuffer {
char *ptr;
long size;

} mmbuffer_t;

An empty memory buffer is specified by setting gfie member adlULL and thesizemember as
zero. The reason of having this function is\oié the memory file preparation, that mightatve
copying memory from other sources. Usingxbé rabdiff_mb (), the caller can setup the two
memory buffer by using, for examplamap(2), and hencevaiding unnecessary memory copies.
The other parameters and the return value of the funatibmabdiff_mb () are the same as the
ones already describedxdl_rabdiff ().

long xdI_bdiff_tgsize(mmfile_t *mmfp);

Given a inary memory file patch, it returns the size that the result file wik lmace the patch is
applied to the target file. It can be used to pre-allocate (or write-allocate) a memory block to store
the patch result so that a compact file will wailable at the end of the operation. The function
returns the requested size, or -1 if an error occurred during the operation.

int xdl_bpatch(mmfile_t *mmf, mmfile_t *mmfp xdemitcb_t *ecb);
Request to patch the binary memory filenf using the binary patch file storedriimfp The

mmf memory fileis not changed during the operation and can be considered as rea@henly
binary patch algorithm has no notion of context, so the patch operation cannot be partial (either

GNU 0.23 8

LibXDif f(3) File Differential Library LibXDiff(3)

success or failure). Thecbparameter contain the callabck (seevabior description) used by the
binary patch algorithm to emit the result file. The function returns 0 if succeeded or -1 if an error
occurred during the patch operation.

SEE ALSO
Two papers dree the content of this library and these are :

o] File System Support for Delta Compresdigrdoshua PMacDonald
http://www.xmailserver. org/xdfs.pdf

o] Fingerprinting by Random Polynomiddy Michael O. Rabin
http://www.xmailserver. org/rabin.pdf

o] An O(ND) Difference Algorithm and lIts Variatiohg Eugene \WMyers
http://www.xmailserver. org/diff2.pdf

Also usefull information can be looked up inside diféutii GNU package :

http://www.gnu.org/software/diffutils/diffutils.html

LICENSE
This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser
General Public License as published by the Free Software Foundation; either version 2.1 of the License, or
(at your option) aylater \ersion. Acopy of the license is\ailable at :

http://www.gnu.org/copyleft/lesser.html

AUTHOR
Developed by Davide Libenzidavidel@xmailsewer.org>

AVAILABILITY
The latest version dfibXDiff can be found at :

http://www.xmailserver. org/xdiff-lib.html

BUGS
There are no knownugs. Bugreports and comments to Davide Libendaxidel@xmailsewer. org>

GNU 0.23 9

