
LibXDif f(3) File Differential Library LibXDiff(3)

NAME
xdl_set_allocator, xdl_malloc, xdl_free, xdl_realloc, xdl_init_mmfile, xdl_free_mmfile, xdl_mmfile_iscom-
pact, xdl_seek_mmfile, xdl_read_mmfile, xdl_write_mmfile, xdl_writem_mmfile, xdl_mmfile_writeallo-
cate, xdl_mmfile_ptradd, xdl_mmfile_first, xdl_mmfile_next, xdl_mmfile_size, xdl_mmfile_cmp,
xdl_mmfile_compact, xdl_diff, xdl_patch, xdl_merge3, xdl_bdiff_mb, xdl_bdiff, xdl_rabdiff_mb, xdl_rab-
diff, xdl_bdiff_tgsize, xdl_bpatch − File Differential Library support functions

SYNOPSIS
#include <xdiff.h>

int xdl_set_allocator(memallocator_t const *malt);
void *xdl_malloc(unsigned int size);
void xdl_free(void * ptr);
void *xdl_realloc(void * ptr, unsigned int nsize);
int xdl_init_mmfile(mmfile_t * mmf, long bsize, unsigned longflags);
void xdl_free_mmfile(mmfile_t *mmf);
int xdl_mmfile_iscompact(mmfile_t *mmf);
int xdl_seek_mmfile(mmfile_t *mmf, long off );
long xdl_read_mmfile(mmfile_t *mmf, void *data, long size);
long xdl_write_mmfile(mmfile_t *mmf, void const *data, long size);
long xdl_writem_mmfile(mmfile_t *mmf, mmbuffer_t * mb, int nbuf);
void *xdl_mmfile_writeallocate(mmfile_t * mmf, long size);
long xdl_mmfile_ptradd(mmfile_t *mmf, char * ptr, long size, unsigned longflags);
void *xdl_mmfile_first(mmfile_t * mmf, long *size);
void *xdl_mmfile_next(mmfile_t * mmf, long *size);
long xdl_mmfile_size(mmfile_t *mmf);
int xdl_mmfile_cmp(mmfile_t *mmf1, mmfile_t *mmf2);
int xdl_mmfile_compact(mmfile_t *mmfo, mmfile_t *mmfc, long bsize, unsigned longflags);
int xdl_diff(mmfile_t * mmf1, mmfile_t *mmf2, xpparam_t const *xpp, xdemitconf_t const *xecfg, xdemitcb_t *ecb);
int xdl_patch(mmfile_t * mmf, mmfile_t *mmfp, int mode, xdemitcb_t *ecb, xdemitcb_t *rjecb);
int xdl_merge3(mmfile_t *mmfo, mmfile_t *mmf1, mmfile_t *mmf2, xdemitcb_t *ecb, xdemitcb_t *rjecb);
int xdl_bdiff_mb(mmbuffer_t * mmb1, mmbuffer_t * mmb2, bdiffparam_t const *bdp, xdemitcb_t *ecb);
int xdl_bdiff(mmfile_t * mmf1, mmfile_t *mmf2, bdiffparam_t const *bdp, xdemitcb_t *ecb);
int xdl_rabdiff_mb(mmbuffer_t * mmb1, mmbuffer_t * mmb2, xdemitcb_t *ecb);
int xdl_rabdiff(mmfile_t * mmf1, mmfile_t *mmf2, xdemitcb_t *ecb);
long xdl_bdiff_tgsize(mmfile_t *mmfp);
int xdl_bpatch(mmfile_t * mmf, mmfile_t *mmfp, xdemitcb_t *ecb);

DESCRIPTION
TheLibXDiff library implements basic and yet complete functionalities to create file differences/patches to
both binary and text files. The library uses memory files as file abstraction to achieve both performance and
portability. For binary files,LibXDiff implements both (with some modification) the algorithm described in
File System Support for Delta Compressionby Joshua P. MacDonald, and the method described inFinger-
printing by Random Polynomialsby Michael O. Rabin. While for text files it follows directives described
in An O(ND) Difference Algorithm and Its Variationsby Eugene W. Myers. Memory files used by the
library are basically a collection of buffers that store the file content. There are two different requirements
for memory files when passed to diff/patch functions. Text files for diff/patch functions require that a single
line do not have to spawn across two different memory file blocks. Binary diff/patch functions require
memory files to be compact.A compact memory files is a file whose content is stored inside a single block.
Functionalities inside the library are available to satisfy these rules. Using theXDL_MMF_A TOMIC
memory file flag it is possible to make writes to not split the written record across different blocks, while
the functionsxdl_mmfile_iscompact() , xdl_mmfile_compact() andxdl_mmfile_writeallocate() are use-
full to test if the file is compact and to create a compacted version of the file itself. The text file differential
output uses the raw unified output format, by omitting the file header since the result is always relative to a

GNU 0.23 1



LibXDif f(3) File Differential Library LibXDiff(3)

single compare operation (between two files). The output format of the binary patch file is proprietary (and
binary) and it is basically a collection of copy and insert commands, like described inside the MacDonald
paper.

Functions
The following functions are defined:

int xdl_set_allocator(memallocator_t const *malt);

TheLibXDiff library enable the user to set its own memory allocator, that will be used for all the
following memory requests. The allocator must be set before to start calling theLibXDiff library
with a call toxdl_set_allocator(). Thememory allocator structure contains the following mem-
bers:

typedef struct s_memallocator {
void *priv;
void *(*malloc)(void *priv, unsigned int size);
void (*free)(void *priv, void *ptr);
void *(*realloc)(void *priv, void *ptr, unsigned int nsize);

} memallocator_t;

Themalloc() function pointer will be used byLibXDiff to request a memory block ofsizebytes.
Thefree() function pointer will be called to free a previously allocated blockptr , while thereal-
loc() will be used to resize theptr to a newnsizesize in bytes. Thepriv structure member will be
passed to themalloc(),free(),realloc() functions as first parameter. TheLibXDiff user must call
xdl_set_allocator() before starting using the library, otherwiseLibXDiff functions will fail due to
the lack of memory allocation support.A typical initialization sequence forPOSIX systems will
use the standardmalloc(3), free(3), realloc(3) and will look like:

void *wrap_malloc(void *priv, unsigned int size) {
return malloc(size);

}

void wrap_free(void *priv, void *ptr) {
free(ptr);

}

void *wrap_realloc(void *priv, void *ptr, unsigned int size) {
return realloc(ptr, size);

}

void my_init_xdiff(void) {
memallocator_t malt;

malt.priv = NULL;
malt.malloc = wrap_malloc;
malt.free = wrap_free;
malt.realloc = wrap_realloc;
xdl_set_allocator(&malt);

}

GNU 0.23 2



LibXDif f(3) File Differential Library LibXDiff(3)

void *xdl_malloc(unsigned int size);

Allocates a memory block ofsizebytes using theLibXDiff memory allocator. The user can spec-
ify its own allocator using thexdl_set_allocator() function. Thexdl_malloc() return a pointer to
the newly allocated block, orNULL in case of failure.

void xdl_free(void * ptr);

Free a previously allocated memory block pointed byptr. The ptr block must has been allocated
using eitherxdl_malloc() or xdl_realloc().

void *xdl_realloc(void * ptr, unsigned int nsize);

Resizes the memory block pointed byptr to a new sizensize. Return the resized block if success-
ful, or NULL in case the reallocation fails. After a successful reallocation, the oldptr block is to
be considered no more valid.

int xdl_init_mmfile(mmfile_t * mmf, long bsize, unsigned longflags);

Initialize the memory filemmf by requiring an internal block size ofbsize. The flagsparameter is
a combination of the following flags :

XDL_MMF_A TOMIC Writes on the memory file will be atomic. That is, the data will not be
split on two or more different blocks.

Once anxdl_init_mmfile () succeeded, a matchingxdl_free_mmfile() must be called when the
user has done using the memory file, otherwise serious memory leaks will happen. The function
return 0 if succeed or -1 if an error is encountered.

void xdl_free_mmfile(mmfile_t *mmf);

Free all the data associated with themmf memory file.

int xdl_mmfile_iscompact(mmfile_t *mmf);

Returns an integer different from 0 if themmf memory file is compact, 0 otherwise. A compact
memory file is one that have the whole content stored inside a single block.

int xdl_seek_mmfile(mmfile_t *mmf, long off );

Set the current data pointer of the memory filemmf to the specified offsetoff from the beginning
of the file itself. Returns 0 if successful or -1 if an error happened.

long xdl_read_mmfile(mmfile_t *mmf, void *data, long size);

Request to readsizebytes from the memory filemmf by storing the data inside thedatabuffer.
Returns the number of bytes read into thedatabuffer. The amount of data read can be lower than
the specifiedsize. The function returns -1 if an error happened.

long xdl_write_mmfile(mmfile_t *mmf, void const *data, long size);

Request to writesizebytes from the specified bufferdata into the memory filemmf. If the

GNU 0.23 3



LibXDif f(3) File Differential Library LibXDiff(3)

memory file has been created using theXDL_MMF_A TOMIC flag, the write request will not be
split across different blocks. Note that all write operations done on memory files do append data
at the end the file, and writes in the middle of it are allowed. This is because the library memory
file abstraction does not need this functionality to be available. Thefunction returns the number of
bytes written or a number lower thansizeif an error happened.

long xdl_writem_mmfile(mmfile_t *mmf, mmbuffer_t * mb, int nbuf);

Request to sequentially writenbuf memory buffers passed inside the arraymb into the memory
file mmf. The memory buffer structure is defined as :

typedef struct s_mmbuffer {
char *ptr;
long size;

} mmbuffer_t;

The ptr field is a pointer to the user data, whose size is specified inside thesizestructure field. The
function returns the total number of bytes written or a lower number if an error happened.

void *xdl_mmfile_writeallocate(mmfile_t * mmf, long size);

The function request to allocate a write buffer ofsizebytes in themmf memory file and returns the
pointer to the allocated buffer. The user will have the responsibility to storesizebytes (no more,
no less) inside the memory region pointed to by the returned pointer. The files size will grow of
sizebytes as a consequence of this operation. The function will returnNULL if an error happened.

long xdl_mmfile_ptradd(mmfile_t *mmf, char * ptr, long size, unsigned longflags);

The function adds a user specified block to the end of the memory filemmf. The block first byte
is pointed to byptr and its length issizebytes. Theflagsparameter can be used to specify
attributes of the user memory block. Currently supported attributes are:

XDL_MMB_READONLY Specify that the added memory block must be treated as read-only,
and every attempt to write on it should result in a failure of the memory file writing functions.

The purpose of this function is basically to avoid copying memory around, by helping the library
to not drain the CPU cache. The function returnssizein case of success, or -1 in case of error.

void *xdl_mmfile_first(mmfile_t * mmf, long *size);

The function is used to return the first block of themmf memory file block chain. Thesizeparam-
eter will receive the size of the block, while the function will return the pointer the the first byte of
the block itself. The function returnsNULL if the file is empty.

void *xdl_mmfile_next(mmfile_t * mmf, long *size);

The function is used to return the next block of themmf memory file block chain. Thesizeparam-
eter will receive the size of the block, while the function will return the pointer the the first byte of
the block itself. The function returnsNULL if the current block is the last one of the chain.

long xdl_mmfile_size(mmfile_t *mmf);

The function returns the size of the specified memory filemmf.

GNU 0.23 4



LibXDif f(3) File Differential Library LibXDiff(3)

int xdl_mmfile_cmp(mmfile_t *mmf1, mmfile_t *mmf2);

Request to compare two memory filesmmf1andmmf2and returns 0 if files are identical, or a
value different from 0 if files are different.

int xdl_mmfile_compact(mmfile_t *mmfo, mmfile_t *mmfc, long bsize, unsigned longflags);

Request to create a compact version of the memory filemmfointo the (uninitialized) memory file
mmfc. Thebsizeparameter specify the requested block size andflagsspecify flags to be used to
create the newmmfcmemory file (seexdl_init_mmfile () ). The function returns 0 if succedded or
-1 if an error happened.

int xdl_diff(mmfile_t * mmf1, mmfile_t *mmf2, xpparam_t const *xpp, xdemitconf_t const *xecfg,
xdemitcb_t *ecb);

Request to create the difference between the two text memory filesmmf1andmmf2. Themmf1
memory files is considered the "old" file whilemmf2is considered the "new" file. So the function
will create a patch file that once applied tommf1will give mmf2as result. Filesmmf1andmmf2
must be atomic from a line point of view (or, as an extreme, compact), that means that a single test
line cannot spread among different memory file blocks. Thexppparameter is a pointer to a struc-
ture :

typedef struct s_xpparam {
unsigned long flags;

} x pparam_t;

that is used to specify parameters to be used by the file differential algorithm. Theflagsfield is a
combination of the following flags :

XDF_NEED_MINIMAL Requires the minimal edit script to be found by the algorithm (may be
slow).

The xecfgparameter point to a structure :

typedef struct s_xdemitconf {
long ctxlen;

} x demitconf_t;

that is used to configure the algorithm responsible of the creation the the differential file from an
edit script. Thectxlenfield is used to specify the amount of context to be emitted inside the differ-
ential file (the value 3 is suggested for normal operations). The parameterecbis a pointer to a
structure :

typedef struct s_xdemitcb {
void *priv;
int (*outf)(void *, mmbuffer_t *, int);

} x demitcb_t;

that is used by the differential file creation algorithm to emit the created data. Thepriv field is an
opaque pointer to a user specified data, while theoutf field point to a callback function that is
called internally to emit algorithm generated data rappresenting the differential file. The first
parameter of the callback is the samepriv field specified inside thexdemitcb_t structure. The sec-
ond parameter point to an array ofmmbuffer_t (see above for a definition of the structure) whose

GNU 0.23 5



LibXDif f(3) File Differential Library LibXDiff(3)

element count is specified inside the last parameter of the callback itself. The callback will always
be called with entire records (lines) and never a record (line) will be emitted using two different
callback calls. This is important because if the called will use another memory file to store the
result, by creating the target memory file withXDL_MMF_A TOMIC will guarantee the "atomic-
ity" of the memory file itself. The function returns 0 if succeeded or -1 if an error occurred.

int xdl_patch(mmfile_t * mmf, mmfile_t *mmfp, int mode, xdemitcb_t *ecb, xdemitcb_t *rjecb);

Request to patch the memory filemmf using the patch file stored inmmfp. Themmf memory file
is not changed during the operation and can be considered as read only. Themodeparameter can
be one of the following values :

XDL_PATCH_NORMAL Perform standard patching like if the patch memory filemmfphas
been created usingmmf as "old" file.

XDL_PATCH_REVERSE Apply the reverse patch. That means that themmf memory file has to
be considered as if it was specified as "new" file during the differential operation (xdl_diff () ).
The result of the operation will then be the file content that was used as "old" file during the differ-
ential operation.

The following flags can be specified (by or-ing them) to one of the above:

XDL_PATCH_IGNOREBSPACE Ignore the whitespace at the beginning and the end of the line.

Theecbwill be used by the patch algorithm to create the result file while therjecb will be used to
emit all differential chunks that cannot be applied. Like explained above, callbacks are always
called with entire records to guarantee atomicity of the resulting output. The function returns 0 if
succeeded without performing any fuzzy hunk detection, a positive value if it secceeded with
fuzzy hunk detection or -1 if an error occurred during the patch operation.

int xdl_merge3(mmfile_t *mmfo, mmfile_t *mmf1, mmfile_t *mmf2, xdemitcb_t *ecb, xdemitcb_t
* rjecb);

Merges three files together. Themmfofile is the original one, whilemmf1andmmf2are two modi-
fied versions ofmmfo. The function works by creating a differential betweenmmfoandmmf2and
by applying the resulting patch tommf1. Because of this sequence,mmf1changes will be privi-
leged against the ones ofmmf2. Theecbwill be used by the patch algorithm to create the result
file while therjecb will be used to emit all differential chunks that cannot be applied. Like
explained above, callbacks are always called with entire records to guarantee atomicity of the
resulting output. The function returns 0 if succeeded or -1 if an error occurred during the patch
operation.

int xdl_bdiff(mmfile_t * mmf1, mmfile_t *mmf2, bdiffparam_t const *bdp, xdemitcb_t *ecb);

Request to create the difference between the two text memory filesmmf1andmmf2. Themmf1
memory files is considered the "old" file whilemmf2is considered the "new" file. So the function
will create a patch file that once applied tommf1will give mmf2as result. Filesmmf1andmmf2
must be compact to make it easy and faster to perform the difference operation. Functions are
available to check for compactness (xdl_mmfile_iscompact() ) and to make compact a non-com-
pact file (xdl_mmfile_compact() ). An example of how to create a compact memory file
(described inside the test subdirectory) is :

int xdlt_load_mmfile(char const *fname, mmfile_t *mf, int binmode) {
char cc;
int fd;

GNU 0.23 6



LibXDif f(3) File Differential Library LibXDiff(3)

long size, bsize;
char *blk;

if (xdl_init_mmfile(mf, XDLT_STD_BLKSIZE, XDL_MMF_ATOMIC) < 0)
return -1;

if ((fd = open(fname, O_RDONLY)) == -1) {
perror(fname);
xdl_free_mmfile(mf);
return -1;

}
if ((size = bsize = lseek(fd, 0, SEEK_END)) > 0 && !binmode) {

if (lseek(fd, -1, SEEK_END) != (off_t) -1 &&
read(fd, &cc, 1) && cc != ’\n’)

bsize++;
}
lseek(fd, 0, SEEK_SET);
if (!(blk = (char *) xdl_mmfile_writeallocate(mf, bsize))) {

xdl_free_mmfile(mf);
close(fd);
return -1;

}
if (read(fd, blk, (size_t) size) != (size_t) size) {

perror(fname);
xdl_free_mmfile(mf);
close(fd);
return -1;

}
close(fd);
if (bsize > size)

blk[size] = ’\n’;
return 0;

}

Thebdpparameter points to a structure :

typedef struct s_bdiffparam {
long bsize;

} bdiffparam_t;

that is used to pass information to the binary file differential algorithm. Thebsizeparameter spec-
ify the size of the block that will be used to decomposemmf1during the block classification phase
of the algorithm (see MacDonald paper). Suggested values go from 16 to 64, with a preferred
power of two characteristic. Theecbparameter is used to pass the emission callback to the algo-
rithm responsible of the output file creation. The function returns 0 if succeede or -1 if an error is
occurred.

int xdl_bdiff_mb(mmbuffer_t * mmb1, mmbuffer_t * mmb2, bdiffparam_t const *bdp, xdemitcb_t
*ecb);

Same asxdl_bdiff () but it works on memory buffer directly. Thexdl_bdiff () is implemented inter-
nally with axdl_bdiff_mb () after having setup the two memory buffers from the passed memory
files (that must be compact, as described above). The memory buffer structure is defined as :

typedef struct s_mmbuffer {

GNU 0.23 7



LibXDif f(3) File Differential Library LibXDiff(3)

char *ptr;
long size;

} mmbuffer_t;

An empty memory buffer is specified by setting theptr member asNULL and thesizemember as
zero. The reason of having this function is to avoid the memory file preparation, that might involve
copying memory from other sources. Using thexdl_bdiff_mb (), the caller can setup the two mem-
ory buffer by using, for example,mmap(2), and hence avoiding unnecessary memory copies. The
other parameters and the return value of the functionxdl_bdiff_mb () are the same as the ones
already described inxdl_bdiff ().

int xdl_rabdiff(mmfile_t * mmf1, mmfile_t *mmf2, xdemitcb_t *ecb);

Request to create the difference between the two text memory filesmmf1andmmf2using the
Rabin’s polynomial fingerprinting algorithm. This algorithm typically performs faster and pro-
duces smaller deltas, when compared to the XDelta-like one. Themmf1memory files is consid-
ered the "old" file whilemmf2is considered the "new" file. So the function will create a patch file
that once applied tommf1will give mmf2as result. Filesmmf1andmmf2must be compact to
make it easy and faster to perform the difference operation. Functions are available to check for
compactness (xdl_mmfile_iscompact() ) and to make compact a non-compact file (
xdl_mmfile_compact() ). Theecbparameter is used to pass the emission callback to the algo-
rithm responsible of the output file creation. The function returns 0 if succeede or -1 if an error is
occurred.

int xdl_rabdiff_mb(mmbuffer_t * mmb1, mmbuffer_t * mmb2, xdemitcb_t *ecb);

Same asxdl_rabdiff () but it works on memory buffer directly. The memory buffer structure is
defined as :

typedef struct s_mmbuffer {
char *ptr;
long size;

} mmbuffer_t;

An empty memory buffer is specified by setting theptr member asNULL and thesizemember as
zero. The reason of having this function is to avoid the memory file preparation, that might involve
copying memory from other sources. Using thexdl_rabdiff_mb (), the caller can setup the two
memory buffer by using, for example,mmap(2), and hence avoiding unnecessary memory copies.
The other parameters and the return value of the functionxdl_rabdiff_mb () are the same as the
ones already described inxdl_rabdiff ().

long xdl_bdiff_tgsize(mmfile_t *mmfp);

Given a binary memory file patch, it returns the size that the result file will have once the patch is
applied to the target file. It can be used to pre-allocate (or write-allocate) a memory block to store
the patch result so that a compact file will be available at the end of the operation. The function
returns the requested size, or -1 if an error occurred during the operation.

int xdl_bpatch(mmfile_t * mmf, mmfile_t *mmfp, xdemitcb_t *ecb);

Request to patch the binary memory filemmf using the binary patch file stored inmmfp. The
mmf memory fileis not changed during the operation and can be considered as read only. The
binary patch algorithm has no notion of context, so the patch operation cannot be partial (either

GNU 0.23 8



LibXDif f(3) File Differential Library LibXDiff(3)

success or failure). Theecbparameter contain the callabck (see above for description) used by the
binary patch algorithm to emit the result file. The function returns 0 if succeeded or -1 if an error
occurred during the patch operation.

SEE ALSO
Tw o papers drove the content of this library and these are :

o File System Support for Delta Compressionby Joshua P. MacDonald
http://www.xmailserver.org/xdfs.pdf

o Fingerprinting by Random Polynomialsby Michael O. Rabin
http://www.xmailserver.org/rabin.pdf

o An O(ND) Difference Algorithm and Its Variationsby Eugene W. Myers
http://www.xmailserver.org/diff2.pdf

Also usefull information can be looked up inside thediffutil GNU package :

http://www.gnu.org/software/diffutils/diffutils.html

LICENSE
This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser
General Public License as published by the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version. Acopy of the license is available at :

http://www.gnu.org/copyleft/lesser.html

AUTHOR
Developed by Davide Libenzi <davidel@xmailserver.org>

AV A ILABILITY
The latest version ofLibXDiff can be found at :

http://www.xmailserver.org/xdiff-lib.html

BUGS
There are no known bugs. Bugreports and comments to Davide Libenzi <davidel@xmailserver.org>

GNU 0.23 9


